serva huang
1个月前
费曼学习法爆火后,最多人问我: "有没有工具能让费曼学习法更高效?" 有。而且用了之后,可能停不下来。 YouMind + 费曼学习法 = 新一代数字化学习系统。 想把知识转化为复利式增长的认知资产? 今天介绍费曼学习法的数字化超级助推器。 费曼学习法很强,但有3个痛点:讲完就忘、卡壳难追踪、知识难串联。 YouMind完美对齐费曼学习法的4步,并做了数字化增强: 1. 选定主题 → YouMind剪存与分组 瞬间从信息碎片化到知识体系化,为后续讲解提供坚实根基。 2. 教授输出 → YouMind AI助手 你的即时AI听众。极速生成讲解或总结,帮你"教会自己",立即验证理解是否到位。 「1-2的核心升级」:AI驱动极速输出,检验知识内化。 3. 查漏补缺 → YouMind动态注释与修改 发现卡壳点,即时标记和修正。知识漏洞实时闭环,深化真正理解,避免知识结构断层。 4. 简化再表达 → YouMind跨文章串联 将孤立知识点网络化、系统化。助力知识迁移和创新整合,形成高价值的个人知识资产。 「3-4的核心升级」:动态修正机制,实现认知迭代的闭环。 YouMind驱动的费曼法,启动了"数字+认知"双飞轮: 效率飞轮: 自动化剪存/分组/AI辅助,大幅提升学习速度。 质量闭环: AI实时陪练 + 动态修正,知识内化更彻底。 每一次学习、输出、修正,都在为个人知识体系积累复利。 学习成果不再是线性叠加,而是指数级增长。 YouMind是最适合现代高知创作者的费曼学习工具。 它将费曼法从"学习技巧"升级为"认知和创作迭代系统"。 用YouMind,你不是在管理笔记,而是在构建你的知识复利引擎和资产。 纳瓦尔说:"那种睡着的时候都能为你赚钱的资产。" 你的知识体系,就是这样的资产。
## MLPs can learn in-context (刚才看到一个帖子一个standford phd提到的,手一滑就不见了) One of the most under-rated empirical results of this year was the fact that MLPs can learn in-context [14]. This is surprising because the attention mechanism is usually thought to be the key for this (induction heads in MHSA, etc). I replicated these findings (the in-context regression task in particular) in small MLPs that had just one hidden layer and as few as 32 hidden units, and found the weight matrices learn a fascinating and structured pattern that matches the nature of the task the authors outline in the paper. It showed an interesting mechanism for how MLPs learned the in-context classification and regression tasks outlined in the paper, that amounted roughly to a very clever memorization pattern of the training data. I think the mech interp community would have a blast figuring this out, and I want to flag this empirical phenomenon for them. On a purely architectural level, MLP-only architectures have the benefit of only using compute-intensive matmuls, which keep GPUs fed. But in practice, work like gMLPs [15] shows that adding attention really is necessary to get maximal performance in the end. How does one square these findings with the fact that MLPs can do simple in-context classification and regression tasks? What exactly is then failing in realistic settings making attention necessary? Or are the learned representations on these synthetic tasks not ones that generalize (like induction heads do) to natural language?