金融汪
1个月前
【扯白】【AI&投资】 以下文字来自于我和同事们讨论AI发展及其🫧风险时,发表的个人看法,也分享给大家(一家之言,仅供参考) 如果大家对AI的投资热潮及其发展感兴趣,我推荐红杉的合伙人David Cahn的两篇文章:2023年9月写的《有关AI的,价值2000亿美金的问题》和2025年6月写的《有关AI的,价值6000亿美金的问题》,基本上,结论就是只有那些资产负债表能够承受巨额减值损失的公司,才有能力参与人工智能基础设施的竞争。 AI的前途是光明的,但是发展的过程中,赢家是谁,还是需要去跟踪和观察的。就像上一波的科技革命,也就是PC+互联网浪潮的全球信息化浪潮,在经历了2000年的互联网泡沫破裂和2008年的金融危机,有些著名公司以及无数不知名小公司“死去”(被分拆,被并购,破产)比如摩托罗拉,AT&T,网景,还有若干门户网站等;有些经历了高峰,风光一时无两,但现在却平庸或岌岌可危,比如思科,IBM,HP,英特尔;有些则真正借助这波信息革命和后续的移动互联网浪潮延续辉煌,成为市值数万亿美金的龙头,比如苹果,微软。另外目前市值万亿的公司中像英伟达,亚马逊,google,Meta,特斯拉都是成立20-30左右年的公司。而苹果,亚马逊,google,meta的产品则是在信息科技浪潮和互联网革命发展过程中走出来的,面向普通大众的超级应用,是改变生活方式的超级应用。 就目前的AI浪潮来看,英伟达是直接受惠,并产生了真实产出的企业;(“卖铲子”的在淘金热中总是第一波最受益,但淘金热最后真正造成的巨大影响是产生了美国的“西部大开发”,造就了旧金山,洛杉矶这些美国大城市.....) 特斯拉是能源革命+出行革命+AI概念的直接受益者,它的万亿估值中,有超过一大半是和FSD,Robataxi,人形机器人相关的但是其实还未见产出的;另外一小半估值才是和造车有关,能产生盈利的。 在AI目前的发展中,已经有三个大板块从它们的客户那里确认了收入:半导体产业链(芯片设计+生产封装的)+数据中心产业链(CPU+GPU+设备+存储+能源,土地REITs等)+云服务/云计算产业链; 这些已经跑出来的公司是实实在在有收入有盈利的,但估值是不是可以给那么高?给出来的估值在后续要由什么来弥补?这个是投资端需要去思考的。 从历史来看,后面真正的大机会,应该还是基于广普人群的超级应用,面对的是全球80亿人群可以彻底改变生活方式的超级应用, 是AGI,包括未来的物理与AI的结合-人形机器人,也包括改变人类预期寿命的医疗行业(新药发明,基因疗法等)发展.....;但在这些超级应用跑出来之前,从投资的角度,会有泡沫有风险,也会有很多公司死掉,赢家只是少数人。 从美国股市的长期历史来看,从1927年以来,有57%的公司其整个生命周期的回报低于国债;从1990年以来,只有1%的公司创造了超额收益Alpha,美国股市1/3的超额回报只来自于10家公司。 去看牛逼的基金经理,其生命周期中的无论是“一战成名”,还是“持续跑赢”,绝大多数的收益来源也是在少数几个股票标的上的押重注。 所以,投资是非均衡,非对称,也没有什么所谓系统性回报。 从这个角度来看,似乎是那些始终具有“再平衡”策略,并具备“新生产力”代表,总是筛出“赢家”的指数,反而成了相对”安全“和”平衡“的一种投资标的。(这一段,仅代表个人观点,不形成投资建议哈😝)
宝玉
1个月前
FT:计算机科学家杰弗里·辛顿:“AI会让少数人更富,多数人更穷” “人工智能教父”畅谈:人类的“唯一希望”,中国的优势,以及机器何时将超越我们 我提前了十分钟到,但杰弗里·辛顿(Geoffrey Hinton)已经等在了多伦多一家雅致的餐吧——里士满车站(Richmond Station)的门厅里。这位计算机科学家——人工智能领域的先驱、诺贝尔物理学奖得主——之所以选在这里,是因为他曾与加拿大总理贾斯汀·特鲁多(Justin Trudeau)在此共进午餐。 我们穿过一个充满工业风、感觉很潮的酒吧,来到一间嘈杂的后厅,里面已经坐满了食客。辛顿摘下他那只旧旧的绿色谷歌科学家背包——这是他之前工作单位的纪念品。因为慢性背伤,他需要用背包当坐垫,好让身体坐直。 他像猫头鹰一样,白发从眼镜框边探出来,低头看着我,问我大学学的是什么专业。“因为如果对方有科学学位,你解释事情的方式就会不一样。”我没有。而特鲁多,至少还“懂点微积分”。 这位被誉为“人工智能教父”的学者,如今已习惯于向世人解释他毕生的心血,因为这项技术正开始渗透到我们生活的每个角落。他见证了人工智能如何从学术圈——他几乎整个职业生涯都在那里度过,包括在多伦多大学的二十多年——走向主流,被那些手握重金、渴望触达消费者和企业的科技公司推向风口浪尖。 辛顿因在20世纪80年代中期的“基础性发现与发明”而获得诺贝尔奖,这些成果促成了“基于人工神经网络的机器学习”。这种大致模仿人脑工作方式的方法,为我们今天触手可及的强大人工智能系统奠定了基础。 然而,ChatGPT的问世以及随之而来的人工智能开发热潮,让辛顿停下了脚步。他从一个技术的加速者,转变为一个对其风险大声疾呼的警示者。在过去的几年里,随着该领域的飞速发展,辛顿变得极度悲观,他指出人工智能有可能对人类造成严重伤害。 在两个小时的午餐中,我们谈论了许多话题:从核威胁(“一个普通人在AI的帮助下很快就能制造出生物武器,这太可怕了。想象一下,如果街上的普通人都能制造核弹会怎样”)到他自己使用AI的习惯(它“非常有用”),再到聊天机器人如何在他最近的分手中意外地成了“第三者”。 “这对我来说显而易见。你和这些东西交谈,问它们问题,它能理解,”辛顿继续说道。“技术圈里几乎没人怀疑这些东西会变得更聪明。” 辛顿在该领域的泰斗地位毋庸置疑,但也有人,甚至包括业内人士,认为现有技术不过是一种复杂的工具。例如,他的前同事、图灵奖共同得主杨立昆(Yann LeCun)——现任Meta首席人工智能科学家——就认为,支撑ChatGPT等产品的大语言模型(Large Language Models, LLM)能力有限,无法与物理世界进行有意义的互动。对于这些怀疑论者来说,这一代人工智能还无法达到人类的智能水平。 辛顿说:“我们对自己的心智知之甚少。”但对于人工智能系统,“是我们创造了它们,构建了它们……我们的理解水平远超对人脑的理解,因为我们知道每个神经元在做什么。”他说话时充满信心,但也承认存在许多未知。在整个谈话过程中,他很坦然地陷入长时间的思考,然后得出结论:“我不知道”或“没头绪”。 辛顿于1947年出生在伦敦西南部的温布尔登,父亲是昆虫学家,母亲是学校教师。在剑桥大学国王学院,他辗转于多个学科,最终选择了实验心理学作为本科学位,并在20世纪70年代初转向计算机科学。尽管神经网络(neural networks)曾被计算机科学界轻视和摒弃,但他始终坚持研究,直到2010年代取得突破,硅谷才开始拥抱这项技术。 当我们喝着汤时,房间里嘈杂的声响,与这位轻声细语、深思熟虑地谈论人类生存问题的长者形成了鲜明对比。他激情澎湃地提出了一个方案,来应对那些由“雄心勃勃、争强好胜的男人们”开发的现代人工智能系统所带来的风险。这些人设想人工智能成为个人助理。这听起来似乎无伤大雅,但辛顿不这么认为。 “当助理比你聪明得多的时候,你如何保住自己的权力?我们只知道一个例子,那就是一个智慧得多的生物被一个智慧得少的生物所控制,那就是母亲和婴儿……如果婴儿无法控制母亲,他们就会死掉。” 辛顿认为,人类“唯一的希望”是把人工智能设计成我们的母亲,“因为母亲非常关心孩子,会保护孩子的生命”和成长。“这才是我们应该追求的关系。” “这可以作为你文章的标题,”他笑着说,用勺子指了指我的记事本。 他告诉我,他以前的研究生伊利亞·蘇茲克維(Ilya Sutskever)也认同这个“母婴”方案。蘇茲克維是顶尖的人工智能研究员,也是OpenAI的联合创始人。在试图罢免首席执行官萨姆·奥尔特曼(Sam Altman)失败并离开OpenAI后,他现在正在自己的初创公司Safe Superintelligence开发新系统。但我猜测,奥尔特曼或埃隆·马斯克(Elon Musk)更有可能赢得这场竞赛。“是的。”那你更信任他们中的哪一个? 他停顿了很久,然后回忆起2016年共和党参议员林赛·格雷厄姆(Lindsey Graham)被问及在唐纳德·特朗普(Donald Trump)和特德·克鲁兹(Ted Cruz)之间选择总统候选人时的一句话:“这就像是被枪杀还是被毒死。” 说到这里,辛顿建议换个安静点的地方。我试图吸引忙碌的服务员的注意,但没成功。他却突然站起来开玩笑说:“我去跟他们说,我可以说我跟特鲁多一起来过这儿。” 换到门口的吧台高脚凳上坐定后,我们讨论了人工智能何时会达到超级智能(superintelligent)——届时它可能拥有超越人类的谋略。“很多科学家都认为在5到20年之间,这是最靠谱的猜测。” 虽然辛顿对自己的命运很坦然——“我已经77岁了,反正也快到头了”——但许多年轻人可能会对这种前景感到沮丧;他们该如何保持积极? “我真想说,‘他们为什么要保持积极?’也许如果他们不那么积极,反而会做得更多,”他用一个问题回答了我的问题——这是他惯常的习惯。 “假设你用望远镜看到一场外星人入侵,10年后就会抵达地球,你会说‘我们如何保持积极?’吗?不,你会说,‘我们到底该怎么应对?’如果保持积极意味着假装这一切不会发生,那人们就不应该保持积极。” 辛顿对西方政府的干预不抱希望,并批评美国政府缺乏监管人工智能的意愿。白宫称必须迅速行动,发展技术以击败中国并保护民主价值观。巧的是,辛顿刚刚从上海回来,还倒着时差。他在那里与一些政治局成员开了会。他们邀请他去谈论“人工智能的生存威胁”。 “中国很重视这件事。很多政界人士都是工程师出身。他们理解这个问题的深度,是律师和销售员无法比拟的,”他补充道。“对于生存威胁,只要有一个国家想出应对办法,就可以告诉其他国家。” 我们能相信中国会维护全人类的利益吗?“这是次要问题。人类的生存比过得舒不舒服更重要。你能相信美国吗?你能相信马克·扎克伯格(Mark Zuckerberg)吗?” 随着我们的中等熟度三文鱼端上桌,卧在甜玉米浓汤上,科技公司开发人工智能的动机也被摆上了台面。辛顿一边说,一边用一片鱼肉蘸着盘里的酱汁。 他之前曾主张暂停人工智能开发,并签署了多封信件,反对OpenAI转型为营利性公司——马斯克正试图在一场进行中的诉讼中阻止这一举动。 谈论人工智能的力量常常被说成是纯粹的炒作,目的是为了抬高开发它的初创公司的估值,但辛顿说,“一个说法可以既对科技公司有利,又同时是事实”。 我很好奇他在日常生活中是否经常使用人工智能。原来,ChatGPT是辛顿的首选产品,主要用于“研究”,但也用来做一些诸如询问如何修理烘干机之类的事情。然而,它甚至还出现在他最近与交往多年的伴侣分手的故事里。 “她让ChatGPT告诉我,我就是个渣男,”他说,并承认此举让他很惊讶。“她让聊天机器人解释我的行为有多恶劣,然后把内容给了我。我并不觉得自己是渣男,所以这并没有让我感觉太糟……我遇到了一个我更喜欢的人,你知道的,事情就是这样。”他笑了,然后补充道:“也许你不知道!” 我忍住了八卦前任的冲动,转而提到我刚庆祝了我的第一个结婚纪念日。“希望这暂时不会成为你的问题,”他回答道,我们都笑了起来。 **辛顿吃饭的速度快得多,**所以当他接到姐姐的电话时,我松了一口气。他告诉姐姐自己正在“一家非常嘈杂的餐厅”接受采访。他的姐姐住在塔斯马尼亚(“她想念伦敦”),哥哥住在法国南部(“他也想念伦敦”),而辛顿自己住在多伦多(当然,也想念伦敦)。 “所以我用从谷歌拿到的钱,在汉普斯特德西斯公园(Hampstead Heath)南边买了一座小房子”,这样他全家,包括他从拉丁美洲领养的两个孩子,都可以去住。 辛顿的谷歌钱来自于2013年卖掉的一家公司。这家公司是他和蘇茲克維以及另一位研究生亚历克斯·克里热夫斯基(Alex Krizhevsky)共同创办的,他们构建了一个能以人类水平的准确度识别物体的AI系统。他们卖了4400万美元,辛顿本想三人平分,但他的学生们坚持让他拿40%。交易完成后,他们加入了谷歌——辛顿在那里工作了十年。 他卖公司的动机是什么?为了支付他患有神经多样性(neurodiverse)的儿子的护理费用。辛顿“估算他大概需要500万美元……而我从学术界是拿不到这笔钱的”。他在脑子里算了算,税后从谷歌拿到的钱“略微超出了”这个目标。 他于2023年离开了这家科技巨头,并在接受《纽约时报》采访时警告了该技术的危险。媒体报道称,他辞职是为了能更坦率地谈论人工智能的风险。 “每次我和记者交谈,我都会纠正这个误解。但这从没什么效果,因为那个故事太吸引人了,”他说。“我离开是因为我75岁了,我的编程能力不如从前了,而且Netflix上还有一大堆我没来得及看的东西。我已经非常努力地工作了55年,我觉得是时候退休了……而且我想,既然我都要走了,我正好可以谈谈那些风险。” 科技高管们常常描绘一幅乌托邦式的未来图景,人工智能将帮助解决饥饿、贫困和疾病等宏大问题。辛顿曾因癌症失去了两位妻子,他对医疗保健和教育的前景感到兴奋——教育是他非常关心的领域,但对其他方面则不然。 “实际会发生的是,富人将使用人工智能来取代工人,”他说。“这将造成大规模失业和利润的急剧增长。它会让少数人变得更富,而大多数人变得更穷。这不是人工智能的错,这是资本主义制度的错。” 奥尔特曼和他的同行们曾建议,如果劳动力市场对人口来说变得太小,可以引入全民基本收入(universal basic income),但这“无法解决人的尊严问题”,因为人们从工作中获得价值感,辛顿说。他承认想念他的研究生们,可以和他们碰撞想法或向他们提问,因为“他们年轻,理解事物更快”。现在,他转而问ChatGPT。 这会导致我们变得懒惰和缺乏创造力吗?认知外包(Cognitive offloading)是目前正在讨论的一个概念,即人工智能工具的用户将任务委托出去,而没有进行批判性思考或记住检索到的信息。又到了打比方的时候了。 “我们穿衣服,因为穿衣服,我们的毛发就变少了。我们更容易因寒冷而死,但前提是我们没有衣服穿”。辛顿认为,只要我们能接触到有用的人工智能系统,它就是一个有价值的工具。 他看了看甜点选项,并确保这次自己先点:草莓配奶油。巧的是,这也是我想要的。他要了一杯卡布奇诺,我要了一杯茶。“这是我们产生分歧的地方。” 奶油实际上是微微融化的冰淇淋,在我描述一个在硅谷司空见惯,但对大多数人来说如同科幻的场景时,它正慢慢变成液体:我们幸福地生活在“具身AI”(embodied AI)——也就是机器人——中间,并随着我们将人造部件和化学物质添加到身体中以延长生命,而慢慢变成赛博格(cyborgs)。 “那有什么问题吗?”他问。我们会失去自我意识和作为人的意义,我反驳道。“那又有什么好的呢?”他回应道。我试图追问:这不一定非得是好的,但我们将不再拥有它,那就是灭绝,不是吗? “是的,”他说,停顿了一下。 “我们不知道将会发生什么,我们毫无头绪,那些告诉你将会发生什么的人只是在犯傻,”他补充道。“我们正处于历史的一个节点,一些惊人的事情正在发生,它可能好得惊人,也可能坏得惊人。我们可以猜测,但事情不会一成不变。” 克里斯蒂娜·克里德尔是《金融时报》驻旧金山的科技记者,负责报道人工智能领域
宝玉
1个月前
我们似乎正处在一个软件开发的黄金时代,又或者,是一个巨大的幻觉之中。 AI 一声令下,代码如瀑布般涌现,过去数周的工作量,如今在几小时内就能完成。我们痴迷于这种前所未有的“产出”速度,仿佛只要油门踩得够深,就能抵达任何目的地。 但这里有一个我们不愿正视的悖论:我们正以惊人的速度,奔向不确定的终点。 麦肯锡的报告和长达数十年的行业研究,像一面冷静的镜子,映照出一个尴尬的现实——绝大多数项目依然在预算超支、偏离目标的泥潭中挣扎。我们创造软件的速度,已经远远超过了我们验证它的速度。当代码的生产成本趋近于零,一个更严峻的瓶颈浮现了:我们如何确保自己没有在用更快的速度,制造更精致的垃圾? 这正是这篇文章试图引爆的认知奇点。它大胆地提出一个反直觉的论断:在 AI 时代,我们最需要的可能不是下一个加速器,而是一套精巧的“减速带”。 我们被“效率”的叙事绑架太久了,以至于忘记了软件开发的核心,从来都不是打字的速度。当一位产品战略顾问开始引述 90 年代的极限编程(XP)时,他并非在怀旧,而是在发出一个清醒的警告。他提醒我们,有些古老的智慧,在今天这个技术狂飙的时代,反而具有了前所未有的现实意义。 比如,那个听起来像是效率“公敌”的原则——结对编程。从账面上看,它直接将产出减半。但这篇文章会引导你看到硬币的另一面:你用一半的产出,换来了一倍的共识、提前暴露的假设、更健壮的代码质量,以及一个持续学习的团队。这笔投资,在 AI 加剧混乱的今天,显得无比划算。 它引导我们直面一个根本性的转变:当 AI 将“写代码”这件事变得越来越廉价,那么人类工程师的价值在哪里?答案不在于和机器比拼速度,而在于那些机器无法胜任的领域:沟通、反馈、简化、勇气和尊重。这篇文章的核心论点,正是那句振聋发聩的宣言:“在小处慢,才能在大处快”。 这不仅仅是一篇关于编程方法的文章,它更像一则关于“数字时代的匠人精神”的寓言。它在提醒我们,无论工具如何进化,软件的终点,永远是人。在 AI 可以为我们提供任何答案的未来,最稀缺的能力,是提出正确的问题。 而极限编程,恰恰是那个不断强迫我们停下来,去追问那个终极问题的框架: 我们正在构建的东西,是正确的吗? 在点击阅读之前,请先放下对速度的执念。因为这篇文章将带领你重新思考,在 AI 时代,真正的“快”究竟意味着什么。