#Workflow

Y11
4周前
我们常听到“Workflow是确定的,Agent是灵活的”这样的说法,但实际应用中,这两种工具的表现或许与想象有所不同。 先看Workflow。 那些真正在使用Workflow的人,他们搭建的流程往往处于动态调整中。 比如,某个节点频繁报错,就需要添加异常处理;发现特定时间段发布的内容阅读量低,便会调整定时器。可见,Workflow的“确定性”并非一成不变,而是在实践中不断优化的过程。 再看被称为“智能”的Agent。 仔细观察会发现,它们的行为模式其实相当固定。以OpenAI的GPT为例,当你十次询问“帮我写个小红书标题”时,它给出的答案往往套路相似:疑问句开头、添加emoji、包含数字。 这种“智能”更多体现在标准化输出上,灵活性反而有限。 谈及代码,很多人认为只有会写代码的人才能用好这些工具,但事实并非如此。 不少零代码基础的博主,借助社区丰富的模板,能熟练搭建n8n workflow。他们的优势在于对业务的深刻理解:知道早上七点该发什么内容,晚上十点的发布策略,以及如何通过数据(如低于某个阅读量即被限流)判断平台规则。这种业务认知,远比技术能力更重要。 相反,一些程序员搭建的营销自动化系统,技术层面无可挑剔,节点设计优雅,异常处理完善,却难以实现涨粉目标。 因为他们不懂用户心理——不知道小红书用户在睡前刷手机时真正关注什么。这并非技术不足,而是缺乏对行业的洞察。 Workflow的真正门槛,其实不在于代码,而在于两点: 一是工具的信息差,比如如何找到自动获取对标账号内容、视频转字幕、分析数据的工具,如何让自动化发布适应平台规则; 二是行业know-how,如寻找对标账号、设计爆款逻辑、设置定时任务、优化内容生成prompt等。这好比八九十年代的商业竞争,真正的壁垒不在于产品本身,而在于对资源、渠道、规则的熟悉度。 技术越强大,越依赖人的经验。因此,Workflow、Agent、代码并非简单以“需求复杂度”划分应用场景。Workflow适合解决“知道怎么做,只是嫌麻烦”的提效问题;Agent则适合处理“不知道怎么做”的赋能需求。 以内容营销为例,发布流程是Workflow问题,判断“什么内容会火”是Agent问题,但最难的“平台潜规则”却需要人的Domain Knowledge(领域知识)。许多人期待一个“发布+爆款预测+规则解读+商业分析”一体化的Agent,却忽略
宝玉
1个月前
问:想问个问题,如果ToB的卡点是懂业务的和懂技术的不是一波人,在构建Agent的方式上,老板们就会倾向于通过低代码落地,但langchain新文章的逻辑又很扎实:低代码产品的空间在被模型能力和纯代码挤压,看起来这类产品似乎是过渡态。那整体未来的方向可能是什么呢?在企业里做低代码一定是沉没成本吗 答: 我的回答仅为抛砖引玉,供参考和一起讨论。 无论是低代码还是纯代码,最大的价值是快速验证可行性,前期把落地的路径跑通才是最重要的,某种程度上来说低代码可以弥补业务人员不懂技术的不足,但是局限性也很大,稍微偏离一点 happy path 就无法编排。 最理想的状态还是业务人员懂技术或者技术人员懂业务,但这很难,现在有 AI 了后,前期的落地业务人员是可以通过 AI 的辅助快速实现,搭建一个可行性的原型还是可以的,等到跑通了,再让专业技术人员去优化也很快。 个人观点和LangChain的类似,企业内不推荐在低代码上花功夫,还是业务人员借助 AI 或者和技术人员合作,搭建原型灵活性更大,更有可能做出真正适合企业的应用,而不是局限于低代码平台有限的能力。 另外现在 AI Agent,可行性更高的还是 WorkFlow,在原有验证过的 WorkFlow上用AI提效,或者借助AI衍生出新的更高效的WorkFlow,Agentic 方案还需要模型能力的进化,以及慢慢摸索出一些有效的交互方式会更靠谱,需要一点时间。
Barret李靖
1个月前
Agent 有两个变量,一个是控制任务走向的 workflow 工作流,一个是控制内容生成的 context 上下文。 1)如果 workflow 和 context 的确定性都很高,这类任务就容易被自动化,类似传统 RPA,比如在处理发票处理、表单填报任务时,AI 更多是粘合剂,发挥空间比较有限。 2)如果 workflow 确定但 context 不确定,也就是流程固定但输入多变,就需要 Agent 在语义和理解上补全,比如客服问答、合同解析,需要通过外部检索、知识图谱等工具来弥补信息的缺口,让推理结果更符合预期。 3)如果 workflow 不确定但 context 确定,也就是输入清晰但走法多样,Agent 就要去自主规划路径,例如市场分析报告生成、个性化推荐等,大多数 End-to-End RL Agent 都擅长做这类任务,因为它们在训练阶段就习得了大量的路径规划和解题思路。 4)而当 workflow 和 context 都不确定时,就是最复杂的场景了,既要推理也要探索,像创新方案设计、跨部门信息收集等,这类更偏向于通用型 Agent,它的执行效果,取决于给它配备的工具丰富度,尤其是编程能力要最大化开放,例如让它学会去 Github 找仓库克隆并修改代码来解决问题,让它像人一样干活儿。 所以,要把 Agent 做好,首先要明确场景。本质上,自动化解决的是“确定性”问题,而智能化解决的是“不确定性”问题。
BillyHe
5个月前
需求面前,Agent 并不比 workflow 高级 (这边的讨论氛围太好了,拜几位大 V 转发,这个号算是冷启了。也发发我在其他平台的一些旧文) 一位刚融资的 AI 创业朋友夜里两点给我发微信:"我们团队争论一整天了,投资人希望看到更'高级'的 agent,但我们现在的 workflow 方案其实更实用...你说我们该怎么选?" 你看,搞 AI 的人人都在 FOMO(Fear Of Missing Out,害怕错过)——仿佛不做 agent 就落伍了,做了 workflow 就没有故事可讲。 概念与需求的错位 如今,"agent"已经成为智力上限突破的代名词。越是自发自动、高自由度的 AI,就越被认为是技术前沿。创业路演中,"自主决策"、"自动执行"、"智能规划"这些词汇成了标配。 但现实很残酷 —— 高级的锤子也需要适配合适的钉子。 在用户的实际问题(钉子)没变得足够复杂之前,过于高级的解决方案(锤子)很可能是一种资源浪费。上周我参观的一家 AI 创业公司,花了 4 个月开发了一个"全自主思考"的 agent,结果用户最常用的功能竟然是"帮我整理这份会议记录"。 预期管理是最大挑战 当下 AI 应用落地的最大难题之一,就是如何控制用户预期。 agent 的全自动预期真的能在短期内实现吗?更关键的是,全自动真的能处理所有那些棘手的 Corner case(边缘情况)吗? 仔细想想,当这些 Corner case 需要反复微调,且调整起来未必能精准命中时,是不是预先设计好的 workflow 反而更可靠? 认识到一个团队上个月做了个难受的测试:同一组任务,分别用"智能 agent"和"固定 workflow"解决: agent 方案:完成率 76%,平均耗时 13.5 分钟,用户满意度 6.8/10 workflow 方案:完成率 94%,平均耗时 7.2 分钟,用户满意度 8.5/10 这结果说明了什么?那些看似"低级"的脏活累活,恰恰可能是最有价值的壁垒。难道只有高概念、高智能才算是竞争优势?这或许只是面向投资人的故事,而非面向用户的价值。 榜单背后的市场选择 第三个现象更耐人寻味:去看看 Product Hunt 等产品榜单,稳定的头部产品几乎都是 workflow 类,真正的 agent 产品寥寥无几。为什么会这样? 因为需求本质没有变。 大模型公司确实有话语权,它们需要讲述足够宏大的故事,构建更具想象力的生态。媒体也需要新概念和新噱头来吸引眼球。这些我都理解。 但当浮躁的概念退去,留下的仍是用户最基础的需求。"帮我解决问题,省时省力"—— 这才是产品存在的根本理由。 从概念回归价值 当开发者们争论"agent vs workflow"时,我建议从三个维度重新审视: 需求主导技术不该问"我是做 agent 还是 workflow",而应该问"用户的痛点是什么,哪种方案能更可靠地解决"。在面对"我要赚钱"的投资人和"我要解决问题"的用户时,明智的创业者知道该听谁的。 可靠性胜过智能性一个可靠解决 80% 场景的半自动化产品,往往比一个时灵时不灵的"全能 agent"更有商业价值。用户容忍的不是功能上限,而是下限。 解决问题比讲故事重要投资人喜欢故事,但用户只在乎结果。在炒作"全能 agent"概念的同时,有多少团队真正关注过用户反馈? 上个月我与一位做 AI 文档处理的创始人交流,他的产品表面上像 workflow,背后却有 agent 的思想。他说:"与其自称 agent 但做不到,不如默默做好 workflow 但超出预期。前者失望,后者惊喜。" 这话说到了点子上。 说到底,真正的技术壁垒不是概念有多前沿,而是解决问题有多彻底。 需求面前,没有高级不高级,只有有用和没用。那些能扎扎实实降低用户成本、提高工作效率的产品,无论叫什么名字,最终都会赢得市场认可。