ginobefun
2个月前
《智能体设计模式》第六章「规划模式」完成翻译,目前已翻译章节: 00 - 前言部分 01 - 第一章:提示链模式 02 - 第二章:路由模式 03 - 第三章:并行模式 04 - 第四章:反思模式 05 - 第五章:工具使用模式 06 - 第六章:规划模式 规划模式让智能体具备前瞻性思维能力,能够将复杂任务拆解为更小且可管理的步骤,并制定实现预期结果的策略。通过规划能力,智能体不再只是对眼前输入作出反应,而是能够自主规划从初始状态到目标状态的完整路径。这里为大家梳理几个关键要点: 1. 核心理念:从被动响应到主动规划 规划模式的核心在于建立「理解目标 → 制定计划 → 执行步骤 → 灵活调整」的智能流程,让智能体具备战略性、目标导向的执行能力。 - 传统模式的局限:基础智能体只能对眼前输入作出反应,缺乏处理复杂多步骤任务的能力,无法将高层次目标拆解为可执行的子任务。 - 规划模式的价值:智能体能够接收高层次目标并自主拆解为有序的执行步骤,在遇到阻碍时灵活调整路线,从而有效处理包含多个步骤和相互依赖的复杂任务。 2. 规划的关键特征 规划模式通过以下特征实现智能化的任务执行: - 目标驱动:接收高层次的目标声明(做什么)而非具体指令(如何做」,由智能体自主决定实现路径。 - 即时生成:计划不是预先存在的,而是根据当前状况和目标要求即时生成的。 - 灵活应变:初步计划只是出发点,智能体能够接纳新信息并在遇到阻碍时动态调整策略。 - 结构化分解:将复杂目标拆解为一系列更小、可执行的步骤或子目标,按逻辑顺序处理依赖关系。 3. 典型应用场景 规划模式在四大领域展现出核心价值: - 流程自动化:编排复杂工作流,如新员工入职流程,包括创建账户、分配培训、部门协调等有序子任务。 - 机器人与自主导航:进行状态空间遍历,生成从起始状态到目标状态的最优路径,同时遵守环境约束。 - 结构化信息整合:生成研究报告等复杂输出,规划包含信息收集、数据归纳、内容结构化、迭代打磨等阶段。 - 多步骤问题解决:制定并对系统化流程进行诊断、实施解决方案,并在必要时升级处理。 4. 实现框架与特点 - CrewAI:通过定义明确的智能体角色和任务,支持先规划后执行的工作流,适合结构化的多步骤任务。 - Google 深度研究:利用多步骤动态迭代流程,把用户提示拆解为研究计划,循环执行搜索与分析,生成带引用的结构化报告。 - OpenAI 深度研究接口:提供编程化控制能力,支持 MCP 协议连接私有知识库,展示完整的中间步骤(推理、搜索、代码执行)。 5. 使用时机与权衡 当任务复杂度超出单一操作范围时,应当使用规划模式,但需要权衡灵活性与可预测性: - 适用场景:任务需要多个相互依赖的步骤才能完成;「如何做」的方案需要探索而非已经明确;需要自动化处理复杂的工作流程;需要生成全面、综合的结果。 - 权衡考量:当问题的解决方法已经清楚且可重复时,固定流程比动态规划更有效;规划增加灵活性的同时也引入了不确定性;需要在自主性和可预测性之间找到平衡。 - 核心价值:将智能体从简单的被动响应者提升为战略性、目标导向的执行者,能够管理复杂流程并产出全面综合的结果。 点击项目链接 可双语对照阅读,跟踪最新翻译进展,也欢迎加入交流群一起阅读讨论、反馈问题或随个 Star ~
meng shao
2个月前
[论文解读] DeepAnalyze: Agentic LLM 助力自主数据科学 来自中国人民大学和清华大学团队的论文,提出 DeepAnalyze-8B 模型,基于 Agentic LLM 实现从原始数据到深度报告的自主数据科学,突破传统固定流程的局限。 核心贡献 · DeepAnalyze-8B:80亿参数开源模型,自主协调规划、数据理解、代码生成等任务,通过提示或微调支持数据问答、建模及开放研究。 · 课程式训练:从单一技能(推理、代码)到综合能力,结合强化学习解决反馈稀疏问题。 · 轨迹生成框架:通过多智能体交互和关键词引导,从数据集生成50万条高质量训练样本(DataScience-Instruct-500K,已开源)。 · 实现从数据清洗到报告生成的端到端流程。 方法概述 基于 DeepSeek-R1-0528- Qwen3-8B,模型通过五类行动标记(如⟨Analyze⟩规划、⟨Code⟩代码生成)循环优化输出。训练分两阶段: 1. 单一技能微调:监督学习提升推理、数据理解、代码能力,关键词优化增强表格处理。 2. 多技能训练:交互轨迹微调后,用.GRPO 强化学习,结合规则、准确性和 LLM 评分优化。 训练在 NVIDIA A800 GPU 上完成,支持 32K tokens 序列,轨迹从 Spider/BIRD 等数据集生成并过滤。 主要成果 在12个基准测试中,DeepAnalyze-8B 表现优异: · 完整流程(DataSciBench):成功率59.91%,完成率66.24%,接近GPT-4o(66.31%),数据准备(71.68%)和可视化(69.09%)领先。 · 分析/建模(DSBench):准确率30.04%,成功率90.63%,超GPT-4o智能体。 · 多步推理(DABStep):准确率38.88%,远超ReAct+GPT-4o(15.77%)。 · 深度研究(DABStep-Research):内容得分3.81/5,格式4.39/5,优于GPT-4o(3.05/5),案例中识别18-27%费用优化和35-42%欺诈降低潜力。 · 代码/表格问答:代码生成61.7%(超GPT-4-turbo 53.9%),表格问答64.47%(SOTA)。 消融实验显示课程训练提升23.54%,轨迹优化增4.57%。模型、代码、数据集已开源。 论文地址:
梁文锋的30个关于投资的金句! 为什么要聊梁文峰,这几天火爆的ai交易大赛他的收益率干翻了其他所有ai。 1、和很多新技术一样,量化投资刚出现的时候也是被嘲笑的对象,没有人相信计算机可以像人类一样进行投资。 2、西蒙斯却敏锐地预见到,随着计算机技术的发展,终有一天“不可能”将会变成现实。他在早期做了诸多尝试,都不太成功,但他并未放弃,他相信时间是站在他这边的。 3、每当在工作中遇到困难的时候,我会想起西蒙斯的话:“一定有办法对价格建模。” 4、在信息化时代,金融市场是公平和透明的,人类基金经理和计算机模型站在同样的起跑线上,这进一步为量化投资大范围成功扫清了障碍。 5、有人问,量化投资,以后还需要人类吗?当然需要,需要大量的程序员和研究员。 6、量化私募整个行业的进步,大致是符合摩尔定律的,每18个月投资能力翻一倍。预计未来几年,中国的股票市场,有效性会进一步提高。这是历史趋势,不可阻挡。 7、市场有效的时候,你直接买指数就可以了,指数就是真正的价值投资,财富的主体还是在老百姓手上。 8、作为对冲基金,我们的使命是,提高中国二级市场的有效性。 关于人工智能 9、幻方某种程度上增强了我们对技术驱动型创新的信心,但也不都是坦途。我们经历了一个漫长的积累过程。外部看到的是幻方2015年后的部分,但其实我们做了16年。 10、我们不是有意成为一条鲶鱼,只是不小心成了一条鲶鱼。 11、(提前囤卡)很多人会以为这里边有一个不为人知的商业逻辑,但其实,主要是好奇心驱动。对AI能力边界的好奇。 12、(为什么DeepSeek目前选择只做研究探索?)因为我们觉得现在最重要的是参与到全球创新的浪潮里去。 13、随着经济发展,中国也要逐步成为贡献者,而不是一直搭便车。 14、我们创新缺的肯定不是资本,而是缺乏信心以及不知道怎么组织高密度的人才实现有效的创新。 15、创新不完全是商业驱动的,还需要好奇心和创造欲。 16、在颠覆性的技术面前,闭源形成的护城河是短暂的。 17、所以我们把价值沉淀在团队上,我们的同事在这个过程中得到成长,积累很多know-how,形成可以创新的组织和文化,就是我们的护城河。 18、开源,发论文,其实并没有失去什么。对于技术人员来说,被follow是很有成就感的事。其实,开源更像一个文化行为,而非商业行为。 19、给予其实是一种额外的荣誉。一个公司这么做也会有文化的吸引力。 20、我们经常说中国AI和美国有一两年差距,但真实的gap是原创和模仿之差。如果这个不改变,中国永远只能是追随者,所以有些探索也是逃不掉的。 21、英伟达的领先,不只是一个公司的努力,而是整个西方技术社区和产业共同努力的结果。他们能看到下一代的技术趋势,手里有路线图。中国AI的发展,同样需要这样的生态。 22、长远来说,我们希望形成一种生态,就是业界直接使用我们的技术和产出,我们只负责基础模型和前沿的创新,然后其他公司在DeepSeek的基础上构建to B、to C的业务。 23、我经常思考的是,一个东西能不能让社会的运行效率变高,以及你能否在它的产业分工链条上找到擅长的位置。 24、只要终局是让社会效率更高,就是成立的。中间很多都是阶段性的,过度关注必然眼花缭乱。 25、DeepSeek(跟幻方团队一样)也全是自下而上。而且我们一般不前置分工,而是自然分工。每个人有自己独特的成长经历,都是自带想法的,不需要push他。 26、我们选人的标准一直都是热爱和好奇心,所以很多人会有一些奇特的经历,很有意思。很多人对做研究的渴望,远超对钱的在意。 27、对顶级人才吸引最大的,肯定是去解决世界上最难的问题。我们就在做最难的事。 28、拿互联网的商业逻辑去讨论未来AI的盈利模式,就像马化腾创业时,你去讨论通用电气和可口可乐一样。很可能是一种刻舟求剑。 29、中国产业结构的调整,会更依赖硬核技术的创新。当很多人发现过去赚快钱很可能来自时代运气,就会更愿意俯身去做真正的创新。 30、以后硬核创新会越来越多。当这个社会让硬核创新的人功成名就,群体性想法就会改变。我们只是还需要一堆事实和一个过程。