#自然语言处理

读书笔记:当 LLM 成为 Agent——从自然语言到“协议语言”的演化 这两周选了四篇极其出色的文章做了分享,ReSearch, ReTool, APR 和 PASTA。 它们虽然解决的具体问题不相同,但 general 的目标都一致,即让LLM知道 when and how 做决策,这就是agent的核心,要做精准的决策。 而这种精准与人类语言的模糊性不一致,但 LLM 的 token 与人类的语言一致性更强,所以 LLM 的输出具有一定的模糊性,作为 Agent , 在做上述精准决策的时候就会出现问题。 于是四篇文章的方法在思想上完全一致,即在自然语言中,插入“协议 token”,让自然语言更有结构化,更偏近机器语言。 PASTA, 引入 <<promise>> <<async>> <<sync>>, 来完成精准的切换异步/同步解码。 APR,引入spawn() / join(), 来决策何时并行/收束多推理线程。 ReSearch, <think> <search> <result> , 来决策何时搜索、何时用结果。 ReTool, 引入<code> <interpreter>, 来决策何时执行代码解释器。 这些“协议 token”,并不存在于人类的自然语言中,但却跟机器语言息息相关。 它们都用显式标记把“语言”切片成更像API 调用或并发原语的片段,让模型能在生成阶段“自编写脚本”,再由调度器或工具链执行。 人类语言 vs. 机器语言: 人类语言:高容错、重语义、含糊其辞,适合表达不确定性与情感。 机器语言:零歧义、结构化、强约束,适合编排确定性任务。 当 LLM 既要与人类沟通又要驱动工具,它必须在两种范式间切换。于是“协议语言(Protocol Language)”就必然出现了:在自然语言流中嵌入可解析的指令标记,既让人类读得懂,又让机器能精准执行。 一些展望: 未来的一段时间,类似的在自然语言中插入“协议 token”的工作一定会越来越多。 未来的“协议 token”可能携带类型、权限、资源预算等元数据,让决策粒度从 When 进一步细化到用多少 computing resource 。 目前的“协议 token”还基本停留在,一套协议解决一个问题的阶段。如果LLM的generalization继续演化,可以会出现一套协议多个问题,或者多套协议多个问题的形态。 当 LLM 从Chatbot演化为Agent,语言的角色正在从沟通媒介变成执行协议。但自然语言不会被淘汰,而是被包裹进更精确、更可组合的结构化符号中——让instruct与action在同一个文本流里无缝衔接。
4个月前
罗福莉(福莉),出生于四川农村的“95后AI天才少女”,现任DeepSeek公司深度学习研究员,是国产大模型DeepSeek-V2的核心开发者之一。她本科毕业于北京师范大学计算机专业,硕士保送至北京大学计算语言学专业,师从万小军教授,期间在国际顶级会议ACL上发表8篇论文(含2篇一作),奠定了其在自然语言处理(NLP)领域的学术声誉。职业生涯始于阿里巴巴达摩院,主导开发了多语言预训练模型VECO,推动AliceMind项目开源;2022年加入DeepSeek后,参与研发了MoE架构大模型DeepSeek-V2,该模型以“中文能力第一梯队”和超高性价比(1元/百万Tokens)成为行业焦点。 2024年底,网传小米创始人雷军以千万年薪邀请其领导AI大模型团队,但截至2025年2月,罗福莉仍通过高中班主任回应“暂未决定”,其知乎认证信息显示为DeepSeek员工。分析认为,她的选择或反映对技术深耕与产业使命的权衡:DeepSeek正处“与国运共振”的上升期,而小米的邀约则凸显行业对顶尖人才的争夺。 罗福莉的成长轨迹融合了个人奋斗与时代机遇。她以“农村女孩”身份突破性别与资源限制,成为AI领域标杆人物,既印证“知识改变命运”的普世价值,亦展现中国AI产业崛起中青年科学家的关键角色。其职业路径的选择,不仅是个人发展问题,更折射出国产AI技术生态中企业与人才协同创新的深层命题。 罗福莉在采访中回顾了自己从农村到顶尖AI开发者的逆袭之路。她出身贫寒,父母曾质疑“女生学计算机是否适合”,但她以“探索更多可能性”的决心打破桎梏。在北师大转专业至计算机后,她通过提前规划与贵人指引(如北大导师万小军),以“目标拆解+死磕精神”实现学术突破:大三自学Python并投出首篇顶会论文,硕士期间以“博士生标准”产出20余篇顶会论文,成为业内瞩目的“ACL8篇作者”。 她坦言职业选择中的试错与坚持:曾短暂尝试产品经理方向,但最终回归技术研究,并先后加入阿里达摩院、幻方量化及DeepSeek。在DeepSeek期间,她深度参与模型研发,强调团队“技术驱动”特质,并公开评价DeepSeek-V2为“性价比之王”。