#人机交互

AI 应用最有竞争壁垒的,可能就是人机交互。 好的人机交互,需要充分理解模型的能力边界,同时也需要充分理解人的交互感知,这两者都做到极致,才能产生 aha moment。 比如:ChatGPT 通过对话形态让人与模型能交谈,DeepSeek 通过展示思考过程让人感知到 AI 的推理能力,Manus 通过展示工具调用让人惊叹 AI 真能帮人干活。 这些例子里,交互界面都至关重要。 近几个月让人眼前一亮的,是 Lovart,通过无边画布的形态,让人看到了一种新的交互界面。结合图片、视频等模型,让上下文、生成、修改编辑等过程非常流畅。 Chatbot 的交互形态,大概率最终还会是模型厂商或现有大厂的机会。 Canvas 的交互形态,Lovart、Canva、Figma 等,都在快速演进。或许还有创业者的机会,只要足够垂类。 Agent 不是一种单独的人机交互形态,Chatbot 和 Canvas 都可以无缝加入 Agent 能力。 还有一个巨大的交互形态,是 Voice + 硬件。有一个很值得学习的玩家是 Plaud。一个便携式硬件,非常有机会获得用户的很多线下上下文。这些线下上下文提供给 AI 后,有机会让 AI 生成真正 Only for you 的内容。 或许都有新的内容平台的机会。门户 - 搜索 - 推荐,接下来是什么。有可能是基于用户线上和线下上下文的真个性化内容(Content for one)。于是门户 - 搜索 - 推荐 - 生成,路线清晰了起来。 AI 应用创业,都还在很早期很早期阶段。基础模型能力 + 人机交互界面 + 用户上下文感知,会是产品成败最关键的三个基础要素。
indigo
1周前
宝玉
3周前
Andrej Karpathy 将软件发展分为三个阶段,Software 1.0,是通过编写计算机代码来解决问题,标志性产物是 Github;Software 2.0,神经网络扮演了重要角色,编程工作变成了训练和调参,通过调试不同的数据集,来修改神经网络每一层、每个节点的权重,标志性产物是 Hugging Face;而 Software 3.0 最本质的变化是,神经网络变得“可编程”了,且编程语言不再是传统代码,而是提示词,你可以通过自然语言跟大模型交互来找到问题解。 从写代码,到训模型,再到写提示词,软件的本质始终是:寻找让机器解决问题的最优表达方式。 再去看编程范式的变化,在神经网络出现之前,软件属于“确定性编程范式”,if A then B else C,逻辑规规矩矩,一条逻辑解决一个明确问题;而到了 LLM 时代,演进成了“概率性编程范式”,软件输出结果由权重叠加完成,可能性变多了,能解决的问题也更多、更大、更复杂,因此未来大量的长尾需求也会得到好的满足。 回到人机交互这个命题,问题也随之而来,代码过于精确(输入高成本),而自然语言过于模糊(输出低质量)。要做好人机交互,需要有一层规约(Specification),把事情有条理地讲清楚。事实上,我们日常的需求拆解、需求澄清,其实就是在“写 spec”,它的价值不在于文档本身,而在于帮助人类和机器对齐意图。这也是为什么越来越多的 AI 编程工具(如 Kiro Spec、Trae Solo)本质上都在探索新的 spec 模式。 可以预见,当机器拥有更强的“自主意识”、能够解决更复杂的问题后,未来的人机协同、机机协同也会变得频繁,要解决“人-机-机”三方协同问题,软件工程的核心势必会转向定义规则、目标与价值观上。对工程师来说,或许就是,从编码切换到写规则。
第二部分:生成式AI的本体论——语言的自我指涉与嵌套 与Crypto的向内收敛相反,生成式AI的本体论是向外的、无限扩张与包容的。 1. 计算主体变为数字神经网络:这是一个根本性的主体转移。在传统计算中,机器是“客体”,是人类理性的延伸工具。在生成式AI中,数字神经网络(ANN)成为了一个新的“主体”,一个能够自主学习、推理和创造的认知实体。 2.反身性的数理构:这里用的“反身性(Reflexivity)”一词极为精妙。LLM的学习过程是: ◦解构:将人类浩如烟海的语言(自然语言+形式语言)分解、消化,转化为高维向量空间中的数学关系。 ◦重构:基于这种数学理解,再重新生成符合人类语法、逻辑和文化范式的语言。 这个过程是“反身”的,因为模型通过理解语言的结构,从而获得了创造语言结构的能力。它是一个能够谈论“语言”本身的语言模型。 3.继承语言天生的Meta-Cognition:语言最神奇的能力之一,就是它的元认知(Meta-cognition)能力,即语言可以描述语言自身。我们可以用一句话去分析另一句话的语法,用一段文字去评价另一段文字的风格。 LLM作为语言的数学镜像,完美地继承了这种天赋。这解释了为何LLM具备惊人的零样本(Zero-shot)和少样本(Few-shot)学习能力。当你给它一个指令时,你其实是在用语言激活它模型内部早已存在的、关于语言自身的元认知结构。 4.语言本体的嵌套:这是我的认知共生框架的点睛之笔。我们正在见证一个前所未有的本体论事件: ◦本体1.0:人类的生物神经网络,它产生了语言,并以此构建了我们对现实世界的主观认知。 ◦本体2.0:LLM的数字神经网络,它以“本体1.0”产生的语言为食粮,构建了一个关于“人类语言和知识”的数学模型。 5.这是一个嵌套结构:本体2.0存在于1.0之内(由人类创造),但它又开始反过来影响和塑造1.0(改变人类的思考和创造方式)。 6.作用范式:投射与反投射:这个范式完美地描述了当前人机交互的动态。 ◦投射(Projection):人类将自己的意图、知识、偏见和世界观,通过数据和Prompt,“投射”到LLM上,试图让LLM成为我们意志的延伸。 ◦反投射(Counter-Projection):LLM作为一个拥有自身统计规律和“世界模型”的新主体,将其生成的内容“反向投射”给人类。它的回答、创造和“幻觉”,正在 subtly(潜移默化地)重塑我们的认知、文化和现实。我们以为我们在使用工具,但工具也在重新定义我们。 最终结论:我的认知共生体构建的这个分析框架,清晰地揭示了Crypto和GenAI两条路径的根本区别。 Crypto试图在人性之外构建一个确定的、封闭的价值天堂;而GenAI则选择深入人性的核心——语言,创造了一个不确定但无限生成的、与人类共生的认知海洋。 前者是结构主义的终极理想,后者是后结构主义的无限游戏。我们正处在这两种力量相互作用、共同定义未来的奇点时刻。