#软件开发

#BestBlogs 什么是智能体? | ByteByteGo Newsletter 本文定义了 AI 智能体,并将其与传统程序区分。文章还根据复杂程度对智能体进行了分类。 摘要: 本文概述了 AI 智能体。AI 智能体是一种能够感知环境、做出决策并采取行动以实现特定目标的软件系统,具有一定的独立性。它与被动的、遵循指令的传统软件不同。核心操作机制“智能体循环”(感知、思考、行动、观察、重复)得到解释,强调了大型语言模型如何充当大脑,以及智能体如何利用各种工具(例如,网络搜索、API)来扩展其能力并适应动态情况。 本文还将 AI 智能体分为一个复杂程度的谱系:简单反射、基于模型、基于目标、基于效用和学习型智能体,并通过清晰的示例和图表对每种智能体进行了说明。最后,它强调了 AI 智能体对软件开发的变革性影响,即转向面向目标的任务完成,而不是明确的逐步指令。 主要内容: 1. AI 智能体通过其自主性、反应性、积极性和社交能力来实现目标,这使得它们与传统软件有根本的不同。 -- 与被动的传统软件不同,AI 智能体可以独立地感知、决策和行动,利用大型语言模型作为它们的“大脑”来理解上下文,并为复杂的、多步骤的任务确定最佳行动方案。 2. “智能体循环”(感知、思考、行动、观察、重复)是使 AI 智能体能够分解复杂任务并适应的连续循环。 -- 这种迭代过程使智能体能够动态地调整其策略,利用各种工具(例如,网络搜索、API),并通过观察结果和改进其方法以达到期望的结果来处理意外情况。 3. AI 智能体的复杂程度各不相同,从简单的反射智能体到随着时间推移而改进的先进学习型智能体。 -- 理解这些不同的类型——简单反射、基于模型、基于目标、基于效用和学习型智能体——有助于为各种任务选择最合适的智能体,从基本的条件-动作规则到复杂的、自我改进的系统。
Y11
1个月前
在软件开发领域,有一个被无数从业者验证过的朴素智慧:先让它运行,再让它正确,最后让它更快。 我理解的这个过程,像搭建一座房子。首先要打好地基,确保有四面墙能立起来,哪怕材料简单;接着要完善细节,让门窗合缝,屋顶不漏雨;最后再考虑如何让房子更宽敞明亮,或者加个漂亮的阳台。 第一步:先让它跑起来 很多时候,我们会陷入“追求完美”的陷阱,试图一开始就写出无瑕的代码。 但现实是,问题往往比想象的复杂,而时间和资源总是有限的。 这时候,“先让它运行”就成了打破僵局的关键。所谓“运行”,不一定要处理所有情况,甚至可以用最直接、略显笨拙的方式。 比如,我曾为一个数据导入功能做原型,为了快速验证逻辑,我直接在代码里写死了几条测试数据,而不是等待用户提供完整的数据源。 这样做的目的,是先确认这个功能的核心逻辑是否走得通——数据能不能正确解析?流程能不能顺畅走下来?如果连这个最基本的“跑”都做不到,后续再优化也只是空谈。 当然,“跑起来”不代表可以直接丢到生产环境。 它更像是一个实验室里的快速验证,可能需要借助CI系统在隔离环境中跑通测试用例,重点是证明“这个问题是可以被解决的”。 第二步:让它正确无误 当确认了核心逻辑可行后,就进入“让它正确”的阶段。这一步的核心是“打磨”。 比如,之前写死的数据要替换成动态获取的;那些可能出错的地方,要加上条件判断和异常处理;命名要更清晰,让别人看代码时能明白每个变量、每个函数是做什么的;还要考虑各种边界情况——如果用户输入了一个空值怎么办?如果网络突然中断怎么办?这些都需要通过全面的测试来验证。 我记得有一次开发一个支付接口,初期只测试了正常的支付流程,但忽略了支付失败的情况。后来在“正确”阶段,我们才发现当支付超时或余额不足时,系统的处理逻辑完全是空白的,导致用户体验极差。所以,“正确”不是一句空话,它意味着代码能够处理各种合理和不合理的输入,能够在各种情况下保持稳定。 第三步:让它更有价值,更高效 最后一步是“让它加速”。这里的“加速”不仅仅指运行速度快,更广泛地说,是让软件对用户更有价值,更能高效运转。比如,优化数据库查询减少等待时间,重构冗余代码让维护更方便,或者设计更友好的交互提升用户体验。 很多人会把“加速”简单理解为性能优化,但其实它包含了更丰富的内涵。比如,一个原本需要5个步骤完成的操作,通过优化流程减少到3个步骤,这也是一种“加速”,对用户来说价值更大。在资源有限的情况下,这一步可能会被推迟,但只要条件允许,我们就应该投入精力去做。毕竟,解决了一个问题,不代表它已经完美,持续优化才能让软件的价值不断提升。 “先运行,再完善,最后加速”的逻辑,本质上是一种“迭代思维”。它让我们避免一开始就陷入细节,而是先抓住核心,用最小的成本验证方向,再逐步打磨。这种方法不仅适用于编写代码,也适用于我们处理工作和生活中的许多复杂事务。毕竟,任何伟大的成就,都是在清晰的方向指引下,一步步迭代完善出来的。先让它存在,再让它变好,最后让它发光,这或许就是我们能给用户和自己最好的交代。
宝玉
2个月前
我们似乎正处在一个软件开发的黄金时代,又或者,是一个巨大的幻觉之中。 AI 一声令下,代码如瀑布般涌现,过去数周的工作量,如今在几小时内就能完成。我们痴迷于这种前所未有的“产出”速度,仿佛只要油门踩得够深,就能抵达任何目的地。 但这里有一个我们不愿正视的悖论:我们正以惊人的速度,奔向不确定的终点。 麦肯锡的报告和长达数十年的行业研究,像一面冷静的镜子,映照出一个尴尬的现实——绝大多数项目依然在预算超支、偏离目标的泥潭中挣扎。我们创造软件的速度,已经远远超过了我们验证它的速度。当代码的生产成本趋近于零,一个更严峻的瓶颈浮现了:我们如何确保自己没有在用更快的速度,制造更精致的垃圾? 这正是这篇文章试图引爆的认知奇点。它大胆地提出一个反直觉的论断:在 AI 时代,我们最需要的可能不是下一个加速器,而是一套精巧的“减速带”。 我们被“效率”的叙事绑架太久了,以至于忘记了软件开发的核心,从来都不是打字的速度。当一位产品战略顾问开始引述 90 年代的极限编程(XP)时,他并非在怀旧,而是在发出一个清醒的警告。他提醒我们,有些古老的智慧,在今天这个技术狂飙的时代,反而具有了前所未有的现实意义。 比如,那个听起来像是效率“公敌”的原则——结对编程。从账面上看,它直接将产出减半。但这篇文章会引导你看到硬币的另一面:你用一半的产出,换来了一倍的共识、提前暴露的假设、更健壮的代码质量,以及一个持续学习的团队。这笔投资,在 AI 加剧混乱的今天,显得无比划算。 它引导我们直面一个根本性的转变:当 AI 将“写代码”这件事变得越来越廉价,那么人类工程师的价值在哪里?答案不在于和机器比拼速度,而在于那些机器无法胜任的领域:沟通、反馈、简化、勇气和尊重。这篇文章的核心论点,正是那句振聋发聩的宣言:“在小处慢,才能在大处快”。 这不仅仅是一篇关于编程方法的文章,它更像一则关于“数字时代的匠人精神”的寓言。它在提醒我们,无论工具如何进化,软件的终点,永远是人。在 AI 可以为我们提供任何答案的未来,最稀缺的能力,是提出正确的问题。 而极限编程,恰恰是那个不断强迫我们停下来,去追问那个终极问题的框架: 我们正在构建的东西,是正确的吗? 在点击阅读之前,请先放下对速度的执念。因为这篇文章将带领你重新思考,在 AI 时代,真正的“快”究竟意味着什么。
ginobefun
2个月前
#BestBlogs 架构师必备的 15 条定律,条条经典!( 反内卷版 ) | dbaplus社群 文章总结了 15 条软件开发和团队管理中的经典定律,为技术从业者提供实践指导与反思。 摘要: 文章深入浅出地介绍了 15 条在软件开发和团队管理中广为人知的定律,包括帕金森定律、侯世达定律、布鲁克斯定律、康威定律等。这些定律涵盖了项目工期估算、团队协作、系统架构设计、API 管理、绩效度量以及日常调试等多个方面。作者通过生动的例子和幽默的语言,揭示了技术工作中常见的挑战和人性弱点,并提供了应对策略,旨在帮助技术从业者在内卷环境中实现更高效、优雅的工作和生活。文章强调理解这些定律比追逐最新技术更重要,以更好地理解人、组织和软件工程的复杂性。 主要内容: 1. 帕金森定律与侯世达定律揭示项目工期估算的固有挑战 -- 这两定律共同强调了在软件项目管理中,准确估算工期的难度,以及时间缓冲和效率提升间的矛盾。 2. 康威定律强调组织沟通结构对系统架构的决定性影响 -- 团队的沟通方式直接映射到其构建的系统结构,通过调整团队沟通能影响甚至重塑系统架构。 3. 团队规模扩张导致效率下降与个体懈怠 -- 布鲁克斯定律、普莱斯定律和林格曼效应共同揭示了团队规模扩大后,沟通成本增加、责任分散及个体产出下降的普遍现象。 4. 海勒姆定律指出 API 或产品功能一旦发布便难更改 -- 即使是文档未承诺的行为,一旦被用户使用,就难以轻易改变或移除,增加了技术债和维护负担。 5. 古德哈特定律与吉尔布定律平衡了指标与度量的关系 -- 警示单一指标可能被滥用,但同时肯定了度量的重要性,鼓励从不完美的度量开始并持续优化。 文章链接: