凡人小北
2个月前
推荐个好东西:火山引擎的 PromptPilot。 之前看 Google 的提示词白皮书,有个点让我印象很深: 他们直接用 Google Doc 管理 prompt,写任务、版本、评估效果。 那时候我就在想,有没有人真把这事儿做成一套完整系统? 现在看到火山这套,有点意思了。 它不只是“帮你写好提示词”,而是把这事儿当作工程问题来解的。 最打动我的,是它在 prompt 优化这件事上做得极其系统,甚至有点狠。 ✅ 从任务出发构造 prompt(带结构、带变量、不是拍脑袋) ✅ 每一版 prompt 都挂着独立评测集 + 自动评分机制 ✅ 没有理想答案也能比对打分(GSB 模式) ✅ 每轮迭代都能 trace 效果,版本可控、可回溯 我们之前做客服对话调 prompt,最常见的就是“改了一句,但说不上来到底有没有变好”。 很多时候上线的版本其实就是“看着还行就先上”。 现在它是:“打一套样本集,系统直接帮你跑出哪一版效果稳定”。 我一直坚持: 模型越强,对 prompt 的要求只会更高。 尤其是在多轮任务、复杂场景里,prompt 不只是“写得好”,而是“是否可控、可管理、可进化”。 PromptPilot 解决的,是这个底层问题。 它不仅能让 prompt 生出来,更重要是——能持续改下去。 版本有 trace,样本能评分,逻辑能反推,工具还能外接, 整个就是“prompt 的 AutoML + GitOps” 一体化工具链。 顺带说一句:这是 2025 火山引擎 FORCE 大会上刚发布的产品,免费版和 Plus 版都开放,9 月前能直接上手全功能体验。 现在市面上很多 prompt 工具做的是“编辑器 + 改写器”, 但你会发现,真正上线之后需要的是一整套治理机制。 PromptPilot 是我目前看到国内第一个跑通这个闭环的, 不是 fancy 的界面,而是认真在解决 prompt 系统演化能力这个问题。 如果你也在做 AI 应用落地,推荐你认真研究一下。 要说缺点:自定义模型没找到海外模型,差评!
凡人小北
2个月前
搞 AI 的不写 Python?现在真不是笑话了。 最近越来越明显——在 AI 应用领域,TypeScript 正在一点点蚕食 Python 的霸主地位。 过去你说搞 AI 的,十个有九个写 Python,模型、数据处理、训练、部署,一条龙服务。 但现在越来越多场景变了:不是“训练 AI”,而是“用 AI”。 用 AI 干嘛?做产品、做 UI、做交互代理、搞插件、接入 SDK… 这些一落地,就全是 TypeScript 的主场。 说几个已经发生的和正在发生的事情: 1️⃣ LangChain 和 LangGraph 现在已经有了 TypeScript 支持,能直接跑在浏览器、Node.js、Cloudflare Workers 上。写 agent、接工具、搞多轮对话,在 TS 世界里越来越丝滑。 2️⃣ OpenAI 的 Assistants API 也不给 Python 独宠,今天还贴心地发布了 TS 版本的 Agents SDK。 3️⃣ JetBrains 的统计显示,TypeScript 使用率从 2017 年的 12% 涨到 2024 年的 37%。在企业里,TS 已经不是前端才用的语言,而是你要做 AI 产品就得学的语言。 这些不是趋势预测,而是已经在开发现场发生的事实。 技术栈正在迁移。你要构建个 AI Copilot、Web 插件、对话助手,Python 行不通。 TypeScript 天然和 UI、API、用户互动贴得更近,类型安全又稳,越来越多团队把它当默认选项。 而且别忘了,过去十年,前端其实一直在默默吞噬后端的地盘。 这波 AI 应用化,刚好又给了前端一记重拳,原来你以为是写页面的,结果人家直接搞起 AI Copilot 了。 再看看 Python 那边,Streamlit、Gradio 这些本该承担AI UI 桥梁的工具,一个不争气,一个半死不活,完全没接住这波热潮。 我看了看趋势,有点慌了……我要去学学 TS 了。 以前是“全栈前端”说说而已,现在是真的“前端越来越吃香了”。 但要冷静两秒(防杠专区): 1️⃣ Python 依然是 AI 训练和科研的王者,PyTorch、TensorFlow、scikit-learn 这些生态太厚实了,训练大模型你离不开它。 2️⃣ TS 在底层 AI 能力上还没那么能打,GPU 加速、模型优化这些,暂时还得靠 Python 打底。 但是,现在 AIGC 丰富的是应用的生态,相比做模型的人,做 AI 应用的人数万倍了吧。 最后,非要有个定位的话,Python 搞理论和模型,TypeScript卷体验和交付。 TS 正在从应用这一层切入,把 AI 真正推向了每个 Web 页面的角落。 爆款 AI 产品,正在越来越多的全栈 TS 了。
凡人小北
3个月前
Google 最近有点疯。I/O 刚甩出一堆 AI… 结果这两天,我在 GitHub 看到它又丢了个狠东西: Gemini Fullstack LangGraph Quickstart 我原本以为是那种“又一个 AI demo 项目”,结果一跑…靠,这套结构直接能改成一个 Perplexity mini。 从提问 → 拆 query → 多轮搜索 → 反思 → 再查 → 带引用输出,整个 agent 流程都封装好了。 Google 又开始搞开源慈善卷行业了,连“智能体该怎么搭”都明牌教学了。 1️⃣ Google 一贯的严谨做派,这次不是 demo,是开箱即用的智能体原型系统 你打开项目,会看到它把整个 fullstack 都搞定了: •React + Tailwind + Shadcn 前端,页面是能用的,不是糊的 •FastAPI + LangGraph 后端,整合 Gemini 2.5 •一键 make dev 起飞,Docker Compose 打包也顺 •自带 UI,整个 agent 的“思考过程”能 trace、能 stream、能调 这种项目不是跟最近看到的 openxxx 类项目一样给你看个思路,你照着能跑。 2️⃣ 很典型的 Agent 流程,查资料、思考和总结 你提个问题 → 它拆几个搜索关键词 → 查 → 看信息够不够 → 不够就再查一轮 → 然后整理、生成、引用都给你带上 基于 LangGraph 搞了一个结构化思考流程落地。 3️⃣ 整套配得非常舒服,能上产品原型的那种 做了一整套: •UI 是现成的,查完结果也展示得明白 •回答里每条 citation 是 traceable 的 •开发体验很丝滑,前后端热更新都有 •Agent 逻辑清晰,graph. py 里面节点你一看就懂 这就属于你改个 search API、换套 prompt,几天就能变成一个 vertical agent demo 拿去 pitch。 4️⃣ 当然它也有边界,但不影响当范本看 毕竟是个 quick start,比如: •只接了 Google Search,没知识库整合 •Reflection 是 prompt 层搞的,不是 policy 控制 •Loop 是写死的 max_round,不够聪明但足够控制 但这些反而是好事儿。因为你想改的地方都能改,想替换的接口都开着。不像很多项目写得很花但你根本下不了手。 5️⃣ 如果你是这几类人,我建议你现在就 fork: •想做 research agent,但又不想从头糊起的人 •想理解 LangGraph 到底怎么 orchestrate 的开发者 •做 AI 项目但每次写完 prompt 总觉得 agent 是假的 你想做 AI 工程,就应该研究这种结构通顺、流程稳定、代码能复用的项目。 自己动手跑一遍,比看十篇如何构建智能体的帖子都值。算是站在巨人的肩膀上 vibe 了。