吴恩达上个月在 YC 的闭门分享,我最大的感受是:这是为“想真做事”的人准备的系统性认知地图。 很多人聊 AI,是在讲技术趋势、AGI、终局预言;他聊的,是从第一个 idea 到第一个用户,再到第一个能复用的系统,怎么能更快、更准、更责任地走一遍。 以下是拆解后的核心洞察,给所有搞 AI 创业、想用 AI 干点事的人👇 1️⃣ 执行速度是核心变量,胜过一切幻想 “模糊想法=烧钱,具体方案=印钞”。具体到什么程度?得是 engineer 听完马上能动手写代码的那种。 执行速度不是要你瞎跑,而是能快速把创意变成原型,再用实际反馈把想法打磨成产品。你能跑多快,不在于有多聪明,更重要的是能不能把构想具体化、把验证节奏压缩成小时级。 2️⃣ 智能体是认知流程的重写,不是 API 套壳 很多人把 Agent 当“插件化 prompt 多轮调用”。但吴恩达讲得更深:Agent 是让 AI 模拟“非线性思考”的结构单位,就像人写文章要列提纲、查资料、反复修改。 agent workflow 的本质,是让 AI 从一次性输出变成演化式构建,从 stateless prompt → 有记忆、能反思、能协作的工作单元。 也就是谁能把业务流程转化为 Agent 结构,谁就能定义新的系统边界。 3️⃣ AI 编程 ≠ 会写代码,而是表达意图的能力 吴恩达说,现在的编程能力,是“新型表达力”。未来的 core skill 是:清晰表达你要什么、组合不同 AI 模块拼出解决方案、具备足够技术判断力,知道什么该微调,什么该 prompt。这就需要跨领域的人才,越是跨领域、越能思考并表达出来新的产品。 AI-native 编程,前期阶段先不要追求完美代码,目标先盯着构建一个可快速被重写、被验证、被迭代的系统。 4️⃣ 技术架构正在从“单向门”变成“可撤回式决策” 以前选错技术栈 = 半年白干;现在选错,可能下周就能重构。 工程并没有降智化,核心要点其实是开发成本下降,试错频率提升,组织必须学会“快速判断 + 快速反悔”。判断力比之前要求更高,更新频率从月级变成了日级。 技术决策也正在重构,从“赌一个方向”变成“构建一个可快速验证、快速回滚的闭环”。 5️⃣ 产品反馈成了瓶颈,PM 要摆脱协调者,自我进化成为节奏设计者 随着工程效率提升 10 倍,最大限制变成:做什么功能?用户要不要?怎么收反馈够快够准? 吴恩达说他见过 PM 和工程师比例 2:1 的配置——这不是反常,而是现实。 未来的组织优化,对于程序员的需求其实是在减少的,不再需要更多人写代码,提高组织获取用户信号的速度变成了首要。 6️⃣ 创业成功,一定是代表着你比别人早半年找到对的方向 “能不能做”不是问题,“值不值得做”才是关键。AI 让做东西变快了,但也让“做错方向”的成本变高了,因为每错一步都放大后续资源浪费。 所以他强调一个核心机制:构建快速验证的原型机制 + 多渠道信号源 + 直觉更新系统。 你能更新得多快,你就能决策得多准。 7️⃣ 最后,AGI 和“AI 威胁”不是你现在该焦虑的 吴恩达对炒 AGI、妖魔化 AI 安全的风气很警惕。他讲得很清楚:真正的风险,不是 AI 太强,而是滥用权力 + 封闭生态;真正该做的,是负责任地使用 + 开放共享技术红利。 封闭平台 + 安全话术 = 技术垄断的护盾; 开源 + 多元协作,才是 AI 创新的护城河。 最后的最后,总结一下: 这场闭门分享没有预测未来 AI 能多牛,吴恩达明明白白的告诉你现在能怎么用 AI 把事情干起来的战略地图。 他讲得很现实,AI 会加速一切,包括失败。执行速度是核心变量,判断力是护城河,反馈回路是竞争力。 你不需要 all-in AGI,但你得学会怎么拼出属于你的那套 agent 乐高。 如果你也在构建 AI 产品、agent 工作流,或者尝试用 AI 重写业务系统,建议把吴恩达这场演讲当作创业者操作系统升级的读本。 技术潮水会一直往前涌,但真正能穿越周期的,只有一个问题:你是不是真的比别人更快做出来、更快做对、更快做成。