#DeepResearch

2个月前
划重点:知道 Deep Research 智能体的架构后怎么更好的使用 这里课代表帮你划一下重点: 有记忆 这意味着中间结果会被保存下来。所以每次扣子空间的任务,你不仅可以看最终的网页,还可以看一些中间结果的 Markdow 等其他文件,这些文件有时候也会包含有价值的信息 有安全过滤 这意味着你就不用想着用它做什么模型不允许做的事情,基本上是徒劳的 有最强模型 由于 Deep Research 对模型能力要求特别高,这意味着各家都会用自己最强的模型出来做这件事,比如OpenAI 刚推出 Deep Research 时,它就是用的当时最新最强的 o3 模型,所以有些对模型能力要求高的任务,也可以让 Deep Research 来做,比如我就常用 Deep Research 分析代码库、参考代码库写一个 MCP 服务之类的,效果比普通对话模型效果还好。 有工具 这意味着它有一些特别的能力,比如代码执行、浏览器、PDF 解析、网页制作等,说明你可以借助它的一些工具来做一些报告之外的事情。比如我曾借助 OpenAI Deep Research 的 PDF 解析工具的能力,来帮我把 PDF 解析成 Markdown,甚至完整的翻译成中文。 特别值得一提的是,OpenAI 和 Gemini 的 Deep Research,只能使用默认的几个工具,但是像扣子空间,它的工具接入了 MCP 扩展,也就意味着可以接入现在火爆的 MCP 生态。比如说你要出行规划,就可以加上高德地图和墨迹天气的 MCP 扩展,让出行规划既能考虑天气因素,又能考虑交通拥堵、道路施工情况。 扣子空间不仅有官方的 MCP 扩展,比如官方 MCP 刚上新了水滴信用、音乐生成,另外你还可以自定义 MCP,「扣子开发平台」商店千余插件,个人无限 DIY 工作流,均可发布至「扣子空间」,让无限海量的MCP 为你的 Deep Research 任务所用。 除了这些 Deep Research 独有的功能,还不可忽视我们在使用 对话类 AI 应用时两个重要的元素:输入和输出。 输入: Deep Research 并非只能输入文本,你还可以输入URL、图片、PDF 等其他格式的内容 输出: 不同家的 Deep Research 支持的输出也不同,比如 OpenAI 的 Deep Research 只能输出 Markdown,Gemini 能将结果到处到 Google Docs,扣子空间则可以生成可交互的网页、图表,还可以生成 PPT。在扣子空间,你要是让它处理 PDF,还能拿到提取的文本文件。 当我们知道 Deep Research 的这些“秘密”之后,就不用再局限于用它去写个调研报告,还可以用它做很多其他事。
4个月前
OpenAI 全新“Deep Research”重磅发布:让 ChatGPT 帮你完成多步骤深度研究 在这个信息爆炸的时代,如何用最短的时间获取最精准、最详实的信息,一直是许多知识工作者面临的难题。如今,OpenAI 带来了全新的 Deep Research 功能,让你的 ChatGPT 化身为一位“研究助理”,能够独立查找、分析并综合海量网络信息,为你提供专业且有完整参考的研究报告。下面,让我们来一起了解这项强大的新功能吧! Deep Research 能做什么? 1. 多步骤研究 相比传统的聊天式问答,Deep Research 具备强大的自主研究能力。它能够从互联网上寻找并分析数百个来源,根据实时获取的信息进行动态调整和推理。短短几十分钟内,它能完成人工需要数小时才能完成的研究工作。 2. 自动化汇总海量信息 你只需要输入研究需求,ChatGPT(在 Deep Research 模式下)就会自动去浏览海量网页、PDF、图片等信息资源,并将它们整合成一份清晰、有理有据的分析报告,犹如一位具有专业分析能力的研究员。 3. 详尽引用与文献记录 Deep Research 每一个输出都附有引用来源,并在侧边栏展示搜索、分析过程,方便你查看、验证信息。同时也提供思路概述,保证研究过程的透明度与可追溯性。 4. 个性化、多场景适用 无论你是做金融、科学、政策、工程等领域的深度研究,还是想为购物(例如汽车、家电或家具等大件商品)做细致比对,Deep Research 都能胜任。它还擅长挖掘各类小众且不直观的信息,只需一次查询,就能节省你大量的时间和精力。 为什么它如此重要? 1. 效率大幅提升 普通用户在网络上搜集信息可能需要自己筛选资料、反复验证。Deep Research 通过自动化的搜寻和分析,大幅缩短研究时间,让你把更多精力放在思考与决策上。 2. 减少重复劳动 Deep Research 擅长处理那些需要浏览无数个网页、文件的繁琐任务。比如撰写报告、整理数据、查找论文资料、对比不同产品参数等。以前这些工作往往让人头疼,现在只需一次提问,就能得到系统、条理化的研究成果。 3. 助力专业领域 该功能在化学、人文社科、数学等众多专业领域都表现出色,尤其在需要检索专业文献、综合多方信息的复杂任务中,让研究人员更轻松、更高效。 4. 迈向真正的“通用人工智能” OpenAI 一直致力于开发具备创造全新知识能力的通用人工智能(AGI)。Deep Research 作为其新里程碑,进一步展现了 AI 在多领域多模态研究中的潜力,为未来更先进的 AI 系统奠定了基础。 如何使用 Deep Research? 1. 选择 Deep Research 模式 在 ChatGPT 界面中,找到消息输入区域的模式选项,选择“Deep Research”。然后在对话框输入你的研究需求。 2. 附加背景文件/数据 如果你有特定的文件、电子表格或参考资料,也可以上传给 Deep Research。它会结合这些材料,为你做更有针对性的深度分析。 3. 查看研究过程与报告 当 Deep Research 开始运行后,聊天界面会出现一个侧边栏,展示它搜索到的来源以及每一步的推理过程,让你随时掌握研究进展。 一般它会花 5~30 分钟进行深度研究,然后返回一份完整的报告,附带详细引用。如果任务很耗时,你也可以先去忙别的事,等它研究完成再回来查看结果。 4. 报告输出形式 初始版本以文字报告为主,在接下来几周内,Deep Research 将支持在报告中插入图片、数据可视化图表以及其他分析产出,让研究结果更加直观、生动。 技术原理与表现 1. 强化学习驱动 Deep Research 通过端到端强化学习训练,掌握了如何在复杂的网络环境中进行多步搜索和推理,遇到新情况时也能灵活应对。 2. 新的评测成绩 • 在 Humanity’s Last Exam 测试中,为 Deep Research 提供支持的模型取得了 26.6% 的准确率,远超上一代模型的表现。 • 在 GAIA 基准上,它也刷新了排行榜记录,证明了在多模态理解和使用工具(如浏览器、Python)等方面更具突破性。 3. 专业领域的进一步提升 一些专业人士反馈,使用 Deep Research 可以在短时间内完成原本需要数小时的调查工作,无论是找文献还是分析数据,效率提升显著。 注意事项及局限性 1. 依然存在幻觉或错误推断 虽然 Deep Research 生成“错误事实”或逻辑漏洞的概率比现有 ChatGPT 模型更低,但仍有可能出现。用户在使用时应保持警惕,尤其在严谨的学术或商业环境下,要对关键信息进行交叉验证。 2. 区分谣言与权威信息的能力有限 模型仍然可能对信息来源缺乏足够判断力,需要用户根据实际情况和专业常识来判断信息的可信度。 3. 报告格式与耗时 首批上线版本可能会出现小规模的格式问题或引用异常,研究任务也可能因为深度搜索而启动较慢。官方表示,会随着使用量的增加和时间的推移迅速改进这些问题。 谁能访问 Deep Research? 1. Pro 用户率先上线 目前 Deep Research 首先向 ChatGPT Pro 用户开放,每月可使用高达 100 个查询额度。 2. 逐步覆盖更多付费用户 之后会依次向 Plus 和 Team 用户开放,随后是企业版。OpenAI 也在努力面向英国、瑞士以及欧洲经济区的用户开放访问权限。 3. 进一步的扩容 OpenAI 计划推出一个使用更小模型、速度更快且成本更低的 Deep Research 版本,届时所有付费用户都会有更高的调用额度。 后续计划 1. 更广泛的平台支持 Deep Research 目前仅在 ChatGPT 网页端上线,官方将在未来一个月内把这项功能带到移动端与桌面端。 2. 接入更多数据源 不仅能访问互联网的公开信息和用户上传的文件,今后还会扩展到订阅或内网资源,让报告更具深度与个性化。 3. 与其他代理能力融合 OpenAI 正在开发的 Operator 功能,能够在现实世界中执行任务。当 Operator 与 Deep Research 结合,ChatGPT 将可以自主进行更复杂的在线与线下任务,为用户提供更全面的“智能助理”体验。 Deep Research 的到来,让我们看到了一个可以代替人工执行复杂、多步骤研究任务的 AI 时代正逐渐变成现实。无论你是需要大量文献支撑的研究工作者,还是想要做精细购物决策的普通用户,都能借助这个工具大幅提升效率。它不仅代表着 ChatGPT 的新能力,也标志着人类向更高水平的通用人工智能迈出了重要一步。对知识工作者来说,这将是一股全新的生产力,也是人工智能赋能未来的又一有力见证。 想要率先体验 Deep Research 的朋友,如果你是 ChatGPT Pro 用户,不妨立刻去试试看;如果尚未获得资格,也可以继续关注官方更新,相信不久后就有机会亲自感受这项强大的功能啦!