sora 2的发布,正式开启AI视频分发平台0-1的突破(也应验年初的2025趋势预测),未来将产生以下十大影响: 1、sora2的发布,正式将AI视频2D生成领域带向全面内卷化,其实当前开源领域已经可以达到类似效。 2、为AI类视频的分发提供了原生native的地方,也将极大打击抖音、tiktok等平台的对AI类视频内容不友好的气焰(这类平台极大限制AI生成内容的分发) 3、未来一年全网的视频、图像内容中,AI类内容渗透率将从不足10%提升到35%以上,也就是我们看到3条内容将有1条是AI生成的。 4、AI生成电影将在未来6个月内成为现实,虽然当前sora2生成电影还有些乏力,但这个gap在6个月内就会被磨平。 5、sora2将会极大刺激视觉领域:影视行业、广告片行业、动态漫行业、短剧行业等将会迎来大的爆发,在AI加持下将会大爆发,规模也会在原来规模基础上增加3倍+。 6、sora2成为AI首个集生产内容和消费内容为一体的平台,也会成为AI领域继大模型、AI搜索之后的第三个被C端用户大规模接受的赛道,将会出现AI超级应用。 7、法律法规大概率在6个月内会有相关落地,以防止诈骗等AI类灰色内容产生。 8、sora2也会反向为视觉模型、物理模型的成熟带来大量的优质数据集,极大的促进视觉模型大爆发,开源版的sora2预计在2个月内会出现。 9、困扰很多视觉模型的数据集版权问题(尤其前段时间海螺ai的版权风波罚款),sora2的出现会极大的缓解,尤其当年语言模型都蒸馏gpt一样,这一波视觉模型也会同样发生。 10、国产的sora2大概率在2个月内会出现,困扰大家最难的是视频数据集的版权,至少这次sora2的出现一定程度上解决了这个问题。 #sora2 #tiktok #sora的影响
AIGCLINK
1个月前
Anthropic关于上下文工程的最新发布:要想充分发挥AI智能体的潜力,需要上下文工程! 博客讲了上下文工程在构建AI智能体中的重要性及相关策略,是对提示工程的进一步拓展和深化 提示工程,关注的是如何写出更好的提示词 上下文工程,关注的是在模型推理过程中,如何持续选择和管理最有助于任务完成的信息(也就是上下文),包括系统提示、工具、外部数据、对话历史等等 构建有效上下文的原则是用最少的、高价值的信息,引导模型产生最佳行为 1. 系统提示 应清晰、简洁、具体,避免过度逻辑化或过于模糊 推荐分模块组织,比如说背景、指令、工具说明、输出格式等,使用XML或 Markdown标签 初始提示应尽可能小,是指信息刚好足够引导行为,然后根据测试结果逐步补充 2. 工具 工具应功能单一、清晰、无歧义,避免功能重叠 工具返回的数据应精简、高效,避免浪费上下文空间 工具集应保持“最小可用集”,便于模型决策和维护 3. 示例 提供典型、多样化的示例,避免堆砌边缘案例 示例比规则更有助于模型理解任务 动态的获取上下文,与其一次性加载所有信息,不如让智能体在运行时通过工具动态获取所需数据 1.通过文件路径、命名规则、时间戳等元数据判断信息的相关性 2.支持“渐进式信息发现”,避免一次性加载大量无关内容 对于持续数分钟到数小时的任务,比如代码迁移、研究项目,需要特殊策略应对上下文窗口限制 1. 压缩 定期总结对话内容,保留关键信息,比如决策、bug、实现细节,丢弃冗余内容 可结合模型自动生成摘要,保持任务连续性 2. 结构化笔记 智能体定期将关键信息写入外部记忆,比如文件、数据库 在需要时再将相关内容加载回上下文 3. 多智能体架构 主智能体负责任务协调,子智能体负责具体子任务 子智能体可深入探索某一问题,仅将摘要返回主智能体,避免上下文过载 适用于复杂研究、并行任务等场景 #上下文工程 #ContextEngineering