时政
财经
科技
虚拟货币
其他
登录
#多智能体系统
关注
meng shao
4天前
Google 11月最新白皮书「Introduction to Agents」—— 作为「Google x Kaggle 5天 AI 智能体强化课程」的开篇,提供从概念验证到生产级智能体系统的指导框架。 Google 这份最新白皮书,聚焦于 AI 智能体的核心架构、分类、构建实践、生产部署、安全治理以及演化学习,客观分析了生成式 AI 从被动预测向自主问题解决的转变,强调智能体是语言模型在软件中的自然延伸,能够通过循环推理、行动和观察来实现目标。 白皮书的核心观点是:构建智能体并非简单集成语言模型,而是设计一个完整的应用系统,需要平衡灵活性和可靠性。 1. 从预测 AI 到自治智能体 AI 正从被动任务(如翻译或生成图像)转向自主智能体,这些系统能独立规划和执行多步任务,而非依赖人类每步指导。智能体结合语言模型的推理能力与实际行动工具,使其成为“语言模型的自然演化,在软件中变得实用”。白皮书强调,从原型到生产级的挑战在于确保安全性、质量和可靠性。 2. 智能体介绍 智能体定义为模型、工具、编排层和运行服务的组合,通过语言模型循环来实现目标。核心组件包括: · 模型(大脑):核心推理引擎,如通用模型、微调模型或多模态模型,负责处理信息、评估选项和决策。 · 工具(双手):连接外部世界的机制,包括 API、代码函数和数据存储,用于获取实时信息或执行行动。 · 编排层(神经系统):管理操作循环,处理规划、记忆和推理策略(如链式思考或 ReAct)。 · 部署(身体和腿):从本地原型到安全、可扩展服务器的托管,确保通过 UI 或 API 访问。 开发智能体类似于导演角色:设置指导提示、选择工具并提供上下文。白皮书指出,语言模型的灵活性是双刃剑,需要“上下文工程”来引导可靠输出。智能体本质上是上下文窗口的策展者,能适应新情境解决问题。 3. 智能体问题解决过程 智能体通过连续循环实现目标,分为五个步骤: 1. 获取任务:从用户或触发器接收高水平目标。 2. 扫描场景:感知环境,收集上下文(如用户请求、记忆、工具)。 3. 思考:模型分析任务并制定计划。 4. 行动:执行计划的第一步,如调用工具。 5. 观察与迭代:评估结果,更新上下文并循环。 示例:客户支持智能体处理“我的订单#12345在哪里?”时,先规划多步(查找订单、查询跟踪、合成响应),然后逐一执行。这种“思考-行动-观察”循环使智能体处理复杂任务。 4. 智能体系统分类 白皮书将智能体分为五个级别,每级基于前一级扩展: · 0级:核心推理系统:孤立语言模型,仅依赖预训练知识,无法实时交互。 · 1级:连接问题解决者:添加工具,能访问外部数据(如搜索 API)。 · 2级:战略问题解决者:支持复杂规划和上下文工程,能主动管理信息。 · 3级:协作多智能体系统:如人类团队,智能体将其他智能体视为工具,实现分工。 · 4级:自演化系统:识别能力差距,动态创建新工具或智能体。 5. 核心智能体架构:模型、工具和编排 · 模型选择:优先考虑特定任务的推理和工具使用能力,而非通用基准。建议多模型路由(如大模型规划、小模型执行)以优化成本和速度。多模态模型处理图像/音频,或使用专用工具转换数据。 · 工具:分为信息检索(如 RAG、NL2SQL)和行动执行(如 API 调用、代码沙箱)。函数调用通过 OpenAPI 或 MCP 连接,确保可靠交互。包括人类交互工具(如 HITL 确认)。 · 编排层:管理循环,决定何时思考或行动。核心选择包括自治程度(确定性 vs. 动态)、实现方法(无代码 vs. 代码优先,如 ADK)和框架(开放、可观测)。 6. 核心设计选择、多智能体系统和设计模式 · 指令与上下文:使用系统提示注入领域知识和角色(如“友好支持智能体”)。增强上下文包括短期记忆(当前会话)和长期记忆(RAG 查询历史)。 · 多智能体:采用“专家团队”模式,避免单一超级智能体。常见模式:协调器(路由子任务)、顺序(流水线)、迭代精炼(生成-批评循环)和HITL(人类审批)。 · 部署和服务:从本地到云托管(如 Vertex AI Agent Engine 或 Cloud Run)。需处理会话历史、安全日志和合规。 7. Agent Ops:结构化处理不确定性 Agent Ops 是 DevOps 和 MLOps 的演化,针对智能体的随机性。关键实践: · 度量重要指标:如目标完成率、用户满意度、延迟和业务影响。 · 质量评估:使用“语言模型作为评判者”对输出打分,基于黄金数据集。 · 指标驱动开发:自动化测试变化,A/B 部署验证。 · 调试:OpenTelemetry 追踪记录执行路径。 · 人类反馈:将报告转化为新测试用例,关闭循环。 8. 智能体互操作性 · 智能体与人类:通过聊天 UI、计算机使用工具(控制界面)、动态 UI 生成或实时多模态(如 Gemini Live API)交互。 · 智能体与智能体:A2A 协议标准化发现和通信(异步任务)。 · 智能体与金钱:AP2 和 x402 协议处理交易,确保授权和微支付。 9. 安全与扩展 · 单个智能体安全:平衡效用与风险,使用混合防护(确定性护栏 + AI 守卫)。智能体身份作为新主体,使用 SPIFFE 验证。ADK 示例:回调、插件和 Model Armor 检测注入。 · 扩展到企业舰队:处理“智能体蔓延”,通过控制平面(网关 + 注册表)强制政策。关注安全(提示注入、数据泄露)和基础设施(可靠性和成本,如预置吞吐量)。 10. 智能体如何演化和学习 智能体需适应变化,避免“老化”。学习来源:运行经验(日志、HITL 反馈)和外部信号(政策更新)。优化包括上下文工程和工具创建。示例:多智能体工作流学习合规指南。Agent Gym 是前沿:离线模拟平台,使用合成数据和专家咨询优化。 11. 高级智能体示例 · Google Co-Scientist:虚拟研究伙伴,生成并评估假设。通过监督智能体管理专家团队,运行循环改进想法。 · AlphaEvolve:发现算法,结合 Gemini 生成代码和进化评估。人类指导定义问题,确保透明和实用。 12. 结论 智能体将 AI 从工具转变为伙伴,通过模型、工具和编排的集成实现自主性。开发者需从“砖瓦工”转向“导演”,强调评价和治理。这一框架指导构建可靠系统,推动智能体成为团队成员。 Google x Kaggle 5天 AI 智能体强化课程: Google 11月最新白皮书「Introduction to Agents」:
#Google AI智能体
#AI白皮书
#智能体架构
#Agent Ops
#多智能体系统
分享
评论 0
0
Hubble AI 中文
1周前
Hubble 的 AI 交易系统在实盘 48 小时内收益 +22.44%。 同期, 的多款顶尖模型取得 -21% 至 -60% 的亏损。 多数所谓的 “AI 交易模型” 都赚不到钱,其实一点也不意外。 为什么? 因为它们的训练对象就是人类行为。 AI学会的,是像人类一样交易—— 在贪婪时贪婪,在恐惧时恐惧。 它们过度拟合过去有效的模式, 而在市场切换周期时完全失灵。 最终,它们交易的方式依旧像人一样,更快——却犯着同样的错误。 Hubble是怎么做的? 我们所做的不是让一个大模型负责所有决策, 而是运行一个 多智能体系统(multi-agent system): 每个 agent 拥有不同的职责、逻辑和决策周期。 它的运作方式更像一个自动化的交易团队,而不是一条 LLM 流水线,让系统进行实时协同 👇 - PORTFOLIO_SUMMARIZER(资产摘要):实时监控盈亏、杠杆与仓位结构,根据真实市场变化提出交易方案,而非依赖情绪信号。 - TRADER(执行交易):在高置信度信号下快速执行,严格控制滑点与仓位规模。 - PORTFOLIO_MANAGER(仓位管理):跟踪整体风险敞口,动态调仓,避免集中暴露。 - RISK_MANAGER(风险控制):动态执行资金使用、清算阈值与波动率上限等约束。 这样的结构让系统具备高频反应、灵活调节与自我修正的能力。 各个 agent 并行运行,不等待中央指令。 它们在毫秒级的周期内持续读取市场信号、更新仓位、再平衡风险。 当波动来临,系统不会“卡死”,而是自动调整。 权重在变化、优先级在转移、资金流向新的机会。 这正是 Hubble 能在高频环境下保持稳定的关键: 不追逐噪音,而是围绕变化进行自适应交易。 实际收益对比: - Hubble:+22.44% - nof1 模型:-13.74%、-21.21%、-42.97%、-49.05%、-60.19% 附图展示了相同时间窗口下的账户总价值(Total Account Value)变化。 可以看到,Hubble 在趋势反转时反应灵活,在信号清晰时加仓更果断,在波动上升时能够迅速降杠杆、减风险。 启示 Hubble构建的,不是一套赚快钱的交易模型, 而是一种能在真实环境中持续学习的结构。 同样的框架,未来将延伸到数据、研究与执行层面, 成为 Hubble 正在打造的 开放智能体市场(Agent Marketplace) 的基础层。 交易只是起点。 我们的目标,是构建一个能自主推理、协作、演化的智能网络—— 一步一个层级地生长。
AI交易比赛:DeepSeek V3领先,GPT-5惨遭亏损· 77 条信息
#AI交易系统
#Hubble
#多智能体系统
#实盘收益
#风险控制
分享
评论 0
0
sitin
2周前
发现了一个浏览器自动化开源项目—— Chrome 插件:Nanobrowser Nanobrowser是一款开源的Chrome浏览器插件,通过接入AI大模型API实现网页自动化操作。配置简单,支持中文指令,无需编程基础 采用多智能体架构,包含规划者(Planner)、导航者(Navigator)和验证者(Validator)三个角色协同工作,能自动完成网页跳转、数据提取等任务。 只需在侧边栏输入自然语言指令,例如“前往HuggingFace查看热门论文”,插件即可自动执行并返回结果。支持OpenAI、DeepSeek等主流模型,所有操作均在本地浏览器完成,保障数据隐私。 主要功能 多智能体系统(Multi-agent System): Planner(规划器):负责制定和调整任务策略。 Navigator(导航器):执行网页导航和操作。 Validator(验证器):检查任务是否成功完成。 交互式侧边栏:提供直观的聊天界面,实时显示任务状态,用户用自然语言与智能体交互。 任务自动化:自动化重复性网页任务,如信息提取、数据整理等,节省时间和精力。 多 LLM 支持:支持连接多种大型语言模型(LLM)提供商,用户根据需求为不同智能体选择不同的模型。 该工具适用于电商比价、信息采集、办公自动化等场景,安装后无需订阅费用,适合追求高效且注重隐私的用户。
#浏览器自动化
#Chrome插件
#AI大模型
#多智能体系统
#数据隐私
分享
评论 0
0
Geek
1个月前
Notion AI 平替? Rowboat 一个开源的、由 AI 驱动的多智能体系统构建平台,用户可以通过自然语言和可视化界面快速构建、管理和部署多智能体工作流,实现复杂的跨智能体协作和自动化任务.
#多智能体之争:Anthropic生态VS单智能体· 77 条信息
#Notion AI
#Rowboat
#开源
#多智能体系统
#自动化任务
分享
评论 0
0
Susan STEM
3个月前
AI Agent 到底是什么?从 Jennings 定义谈起 “AI Agent”这一术语虽在近年大热,但其核心概念早已由 Nicholas R. Jennings 与 Michael Wooldridge 在 1995 年的《Intelligent Agents: Theory and Practice》中系统确立。他们将“智能体”定义为:一个嵌入特定环境中的计算系统,能够在该环境中自主行动以实现其设计目标。这一定义成为多智能体系统(MAS)研究的基础,并提出四项衡量智能体的关键属性:自主性(能独立运行)、反应性(感知并响应环境变化)、前瞻性(基于目标采取主动行动)与社会性(能够协作与沟通)。 然而,在当下的工程实践中,要真正实现这四大属性仍具有相当高的难度。尽管 ReAct、AutoGen、LangGraph、CrewAI 等主流框架纷纷打出“Agent”旗号,它们多数仍停留在“语言模型 + 工具调用”的阶段,缺乏结构化的状态封装、计划机制与交互协议。这些系统通常依赖自然语言记忆作为状态存储,对环境的感知局限于文本输入输出,目标与计划的建模大多被简化甚至省略,而协作机制也往往停留在对话模拟层面,缺乏真实的社会行为协议与组织控制结构。 换句话说,当代 LLM Agent 多数只能在表层满足 Jennings 框架中的“工具调用”与“表面协作”,而在真正的状态感知、计划能力、环境互动与协作协议等方面仍存在明显工程落差。它们更像是 prompt 的包装器,而非具备认知与调度能力的结构性智能体。 要真正构建接近 Jennings 理想的 AI Agent,必须引入可解释的状态模型与持久记忆结构、明确的计划调度机制、标准化的交互协议以及多轮对话中的身份与行为一致性。只有当智能体具备了这些结构能力,它才不再是一个被动执行的语言函数,而是一个真正能够协同、规划、反应并自主演化的结构系统单元。 真正的智能体到底值不值得投入研究?还是说,它会不会最终成为一个耗尽心力、却注定走入死胡同的幻象? 这个问题越来越像一面照妖镜。现实世界里,有太多曾被寄予厚望的底层技术,最终悄无声息地被市场淘汰、被工程复杂性吞噬。Jennings 所定义的理想型智能体,正面临类似的命运风险。它拥有令人敬畏的结构理想—— 🧱 结构性:每一个模块边界清晰、可组合、可迁移; 🧠 状态性:具备可追踪、可持久、可调度的运行状态; 💾 记忆性:融合语义唤醒与行为经验的双系统记忆机制; 🧭 路径性:支持非线性、多策略、可重构的执行结构; 🤖 调度性:能够统一调度工具、任务、子 Agent; 🔁 自演化:具备反思、失败容忍、成长与优化能力。 这简直就是我心中最理想的“结构人格”,我是无比憧憬的。这个甚至能完美解决上下文的问题。 看起来无比完美,却让人光是读完就头皮发麻。工程难度极高,构建成本惊人,调试流程复杂,状态不可控,行为难以解释。我也怀疑:这样一个理想结构真的能落地吗?它真的有价值吗? (2/n)
#AI Agent
#智能体
#Jennings定义
#LLM Agent
#多智能体系统
分享
评论 0
0
凡人小北
4个月前
读完 Anthropic 的多智能体系统文章,有几个点挺触动的,尤其是放回我们平时在做 agent 编排和系统落地的过程中,对应起来很多痛点被他们提前踩过、总结得非常系统。 这套系统看上去是给 Claude 提升复杂研究任务能力,底层其实是三个关键词:带宽、结构、机制。 1️⃣从 token 到带宽:扩容问题其实是系统问题 他们很明确地说,单个 agent 很快就会遇到 token 限制,这不是模型能力不行,而是容量不够。很多时候 LLM 的“不会”、“忘了”、“答不出来”,只是 context 塞不下。这一点在我们自己调长链条、多跳调用的时候也很明显。Anthropic 选择的解法不是扩模型,而是拆任务、开并发、分 agent,每个 agent 自带上下文窗口,从系统结构层面扩容。 这种设计非常实用,因为它绕过了 token 墙的天然限制,通过多 agent 并发变相把 token 维度拉开了。这是我最近做 agent 编排时反复体会到的:不是把 prompt 写得多聪明就能解决,而是要想清楚结构怎么设计,谁来拉信息、谁来拼结构、谁来追引用。 2️⃣提示词是系统指令,很重要、很重要、很重要! 这篇文章有个细节写得特别清楚:主 agent 的提示词,是负责分配任务、指明目标、交代格式、选工具的。这个逻辑其实是我们做复杂 agent 系统中很容易忽略的一块:提示词不只是沟通语言,更是调度逻辑、任务协议、格式规范的集中承载体。 尤其是多个 agent 并行运行时,如果没有一个清晰、格式化、结构稳固的 prompt 模板,每个子 agent 拉回来的信息会特别散、错漏率高、很难合并。这时候,主 agent 的提示词就等于一个调度中枢的“编程语言”。 从我们平时用的实践来看,这就意味着主 agent 的提示词策略应该和流程图一样严谨:每一步要预设结果、预设失败、预设上下游。这块我觉得是现阶段很多 agent 框架还不够成熟的地方。 3️⃣系统级机制,决定了能不能撑进生产环境 我觉得特别值得借鉴的工程概念:checkpoint、异步重试机制、全链路 tracing、彩虹部署。这几个在大数据异步系统里很常见概念,AI 领域得好好学习下。 这些词不是为了好听,它们背后都是在回答一个问题:这个系统崩了怎么办?agent 卡死怎么办?升级逻辑还没验证好怎么办?一整套机制让这个系统不是在 demo 一个可能性,而是在上线跑任务、自动修复、平滑演进。 平时我们在做流程型 AI 系统的时候,很容易只关注“怎么生成”“怎么判断好坏”,但 Anthropic 的做法提醒我:agent 系统本质上要往服务化方向走,就必须预设失败是常态,重试是能力。 4️⃣评估机制是不可缺的闭环,不然做不出反馈导向的系统进化 他们有一个细节很打动我:让另一个 LLM 去评审 agent 的结果,从准确性、引用合理性、覆盖度等多个维度打分。这就相当于在系统里内嵌了 QA 流程,而且不是事后人评,而是可以插入调试链路的 LLM 评测器。 我们自己在调多 agent 结构时常遇到一个问题:任务执行完了,但结果质量很难量化,只能靠人工判断或者事后比对。这套“LLM 评估 LLM”的机制,让我们开始可以想象一种更自动化的 agent 演化路径:系统自己跑,自己打分,自己选择 prompt A 还是 B,更适合持续调优。 5️⃣并发是工具,不是策略,适用场景边界要想清楚 这套系统最适合的场景是:问题复杂度高、信息广度要求强、非实时产出型任务。例如政策研判、产品调研、文献综述、竞品分析这些,在私域服务里也可以类比成“多维标签用户意图研判”这种复杂工作。 但如果放在需要紧密配合、频繁迭代、低延迟要求的任务上,例如代码生成、对话任务、实时接口构建,多 agent 的协调成本反而可能放大系统复杂度。所以并发结构是个好工具,但什么时候该开几个 agent,什么时候该单线程跑到头,这种策略边界要想清楚。 这篇文章最核心的不是“我们做了一个多 agent 系统”,而是他们已经把多 agent 作为一种工程能力进行制度化建设:有流程、有容错、有评估、有上线机制。 对在第一线实际落地 AI 能力的团队来说,有一个非常直接的启发是:构建 agent 系统,不能只是对话式的 prompt 编排,而要像搭服务一样,从任务定义到评估反馈,从并发机制到异常兜底,形成一整套可以持续运行的系统逻辑。 这一点,比起模型调优,本质上更像是一种架构能力的竞争。
#多智能体之争:Anthropic生态VS单智能体· 77 条信息
#Anthropic
#多智能体系统
#Claude
#复杂研究任务
#系统落地
#带宽
#结构
#机制
分享
评论 0
0
orange.ai
5个月前
今天很有趣,两家知名的公司各出了一篇文章,争论要不要使用多智能体系统。 Claude 的官方 Anthropic :如何构建多智能体系统 Devin 的官方 Cognition :不要构建多智能体系统 这核心的争议点在于:Context 上下文到底应该共享还是分开? Claude 这边的观点是,搜索信息的本质是压缩,单个智能体的上下文有限,面对无限的信息,压缩比太大就会失真。 这就好比一个老板能力再强,也不可能搞定所有的事情,还是需要雇人去解决。 通过多智能体系统,老板让不同的智能体分别研究、汇报重点,老板最后整合到一起。由于每个智能体有自己的专长,具有多样性,减少了单一路径依赖现象,实际效果上,多智能体也超过但智能体 90%。 这是集体智慧,一起协作获得的胜利。 Devin 这边的观点是,多个智能体的上下文不一致,会导致信息割裂、误解、他们汇报给老板的信息经常充满了矛盾。 而且很多时候,智能体的每一步行动都是依赖前一个步骤产生的结果,而多智能体通常分别跟老板沟通,互相之间缺乏沟通,这样很容易导致互相矛盾的结果。 这体现出了个体智慧的完整性和高效性。 两边观点看下来,是否使用多智能体架构,特别像是人类运行一家公司的选择。 一人公司还是多人公司? 一人公司,一个人的脑力、体力、时间都是非常有限的。 优点是一人公司的沟通成本为0 ,可以把所有的时间都高效使用。 而多人公司,人越多,沟通成本就越高,管理难度就越大,总体效率下降。 但因为人数多,脑力多,体力多,整体的价值产出也就有可能更多。 多智能体的设计很有难度,这其实很正常,就像运行一家公司一样,很难。 难就难在建立有效协作的系统。 而且 1个人,3个人,10个人,100人,1000人,所需要的协作系统又不大相同。 参考人类历史,依靠集体智慧,人类在近代获得了文明的指数级发展。 多智能体的集体智慧,也许就是在 Scaling Law 逐渐放缓后,AI 获得指数级发展的那个萌芽。 而关于上下文,人类的协作至今也无法做到完美的上下文管理。 这让我想到,软件工程从来不是追求完美,而是持续迭代。
#多智能体之争:Anthropic生态VS单智能体· 77 条信息
#多智能体系统
#上下文共享
#信息压缩
#Anthropic
#Cognition
分享
评论 0
0
orange.ai
5个月前
做 Agent 研究的不要错过今天 Anthropic 发布的关于多智能体系统的文章。 ## 什么是多智能体系统? 多智能体系统是指由多个AI代理(如LLM)协同工作、并行使用工具来完成复杂任务的系统。 与单智能体相比,多智能体系统能同时探索多个方向,分工明确,提升效率和覆盖面,尤其适合开放性、动态变化的问题。 ## 为什么要用多智能体系统? 在过去的十万年里,人类个体的智能水平不断提升。 而在信息时代,随着人类集体智慧和协调能力的提升,人类社会的能力也呈指数增长。 Agent 也是类似的,即便是通用的智能体,在单独运作时也会遇到瓶颈,而 Agent 群体可以完成更多的任务。 在内部研究评估中,Claude Opus 4 为主导 Agent,Claude Sonnet 4 为子 Agent 的系统,比 Claude Opus 4 的单 Agent 性能高出 90.2% 。 举例来说,当被要求识别信息技术标准普尔 500 指数公司的所有董事会成员时,多 Agent 系统通过将其分解为子 Agent 的任务找到了正确答案,而单 Agent 系统则无法通过缓慢的顺序搜索找到答案。 ## 为什么多智能体系统是有效的? 搜索的本质就是压缩。从庞大的语料库中提炼 Insights。 但是语料过于庞大,压缩就会失真。 通过多智能体系统就能有效解决这一问题。 子 Agent 在自己的上下文窗口中进行压缩,自主地为主 Agent 提供多个方面的浓缩信息。 子 Agent 各有分工,使用不同的工具、提示词、探索路径,这样减少了路径依赖,实现多个独立方向的同时调查。 多 Agent 系统的有效是因为他们使用了足够多的 token 来解决问题。 在 BrowseComp 评估 (测试浏览智能体查找难以找到的信息能力),80%的性能差异都可以用 token 使用的多少来解释。15% 的差异可以用工具调用次数和模型选择来解释。 所以,多 Agent 是一种非常有效的架构。把工作分配给具有单独上下文窗口的智能体,以增加并行推理能力。 ## 多智能体系统的缺点 缺点嘛,就是贵。 智能体使用的 Token 一般是聊天的 4 倍。 而多智能体系统使用的 Token 一般那是聊天的 15 倍。 只有任务的价值足够高,才能对得起这么高的成本。 此外,一些任务并不适合多智能体系统,比如要求所有智能体共享上下文,或多智能体之间具有依赖关系的任务。 例如,大多数的编码任务,可并行化任务比较少。 ## 多智能体系统和 RAG 的区别是什么? 传统的方法使用 RAG,静态检索。获取与输入查询最相似的一组数据块,并用这些数据块进行回应。 而多智能体架构使用多步骤搜索,动态查找相关信息,结合新发现的信息,分析结果,并形成高质量的答案。 流程图展示了我们多智能体研究系统的完整工作流程。当用户提交查询时,系统会创建一个 LeadResearcher 智能体,并进入迭代研究流程。 LeadResearcher 首先仔细考虑方法并将其计划保存到内存中以保留上下文,因为如果上下文窗口超过 200,000 个标记,它将被截断,并且保留计划非常重要。 然后,它会创建专门的子代理(此处显示两个,但数量可任意),并执行特定的研究任务。每个子代理独立执行网络搜索,运用交叉思维评估工具结果,并将结果返回给首席研究员。首席研究员会综合这些结果,并决定是否需要进一步研究——如果需要,它可以创建更多子代理或改进其策略。 一旦收集到足够的信息,系统就会退出研究循环并将所有发现传递给 CitationAgent,后者处理文档和研究报告以确定引用的具体位置。 这确保所有声明都正确归属于其来源。最终的研究结果(包括引文)将返回给用户。
#多智能体之争:Anthropic生态VS单智能体· 77 条信息
#Anthropic
#多智能体系统
#AI代理
#LLM
#智能水平提高
分享
评论 0
0
AIGCLINK
5个月前
一款多智能体交易系统:TradingAgents,它模拟真实的交易团队,通过分析、讨论和决策,来决定是否买卖股票 它有分析师、研究员、交易员、风险管理员几个智能体,综合财务数据、市场情绪、新闻报道等多个信息,智能体间进行动态讨论,进而做出全面合理的决策 比如,有的智能体认为股票值得买入,有的认为有风险,它们会通过辩论来达成一个最佳决策 可以自定义策略,你可以根据自己的交易风格和目标,调整智能体的行为,或者添加新智能体和功能模块 支持实时获取最新市场数据和缓存数据 系统基于LangGraph构建,它实验时使用的o1-preview和 gpt-4o作为深度思考和快速思考的模型 #AI交易系统 #TradingAgents #AI股票助手
#多智能体系统
#股票交易
#人工智能
#金融科技
#交易策略
#市场分析
分享
评论 0
0
个人主页
通知
我的投稿
我的关注
我的拉黑
我的评论
我的点赞