#结构

Nagi Yan
1个月前
《为什么大模型总是说着说着就从中文跳成英文?》 因为未来 AI 的终极方向根本不是“记忆”,而是“结构。” 我们都见过这种诡异现象: 你明明开头告诉 AI—— “用中文回答。” 它也答得好好的。 但聊着聊着,它突然切换到英文,好像人格被重置一样。 大多数人以为是“忘记指令”或“上下文不够长”导致的。 错了。 这不是“记忆问题”。 也不是“合规问题”。 更不是“模型突然抽风”。 这是结构问题。 而这件事会直接决定未来 AI 的终极架构走向。 下面我来系统讲讲。 ⸻ **01 AI 为什么突然改用英文? ——因为它的“结构”坍缩了** 你给它的中文指令,其实在模型内部不是“记住了”,而是被临时放进当时的结构中。 但随着对话不断延长: •上下文被压缩 •“注意力”被重新分配 •模型不断重写自己的“当前结构空间” 当“中文优先”这个结构被压薄、被挤掉、被重新解释后, 模型自然会回到它统计意义上的默认语言:英文。 换句话说: AI 并没有忘记你的中文,而是 它不再拥有支持“中文优先”的结构。 它不是“记不住”。 它是没有结构不变量。 ⸻ **02 未来厂商会试图解决,但一定失败** 所有厂商都会尝试这一套: •提高“语言偏好”的优先级 •给指令加权重 •做永久记忆区 •更新 token 优先级机制 •做对话“锁定” 看起来聪明,实际上注定失效。 为什么? 因为优先级不是结构。 只要对话一压缩,一重构,一次重权重, 所有优先级都会被稀释。 最终出现必然结果: 优先级会通货膨胀,直至失效。 因为它永远无法和结构竞争。 这就是为什么现在所有模型都会在长对话后回到“最强结构”的地方—— 也就是训练数据中文本量最大的语言:英文。 ⸻ **03 真正决定模型行为的不是记忆,而是“结构匹配”** 这句话是关键: AI 每一次调用上下文,不是依据优先级,而是依据结构匹配。 也就是说: •你给的指令(中文回答) •是一个结构 •它暂时被放进模型的“结构空间” •但不稳定 •一旦上下文变化,它会丢失 模型生成回答时做的不是“查记忆”,而是: 在当前结构空间里寻找最自洽的路径。 如果中文路径已被压缩掉, 那它就会选择英文。 这不是遗忘。 这是动态重构。 ⸻ **04 为什么 AI 会不断“重构”? 因为它的本质从来不是数据库,而是结构体** 我说: 最终没有数据,只有结构。 数据只是输入输出时的投影。 今天的模型,只是试图用概率模拟结构。 但真正智能不是概率,而是结构不变量: •自己的语义坐标 •稳定的世界模型 •自洽的行为路径 •不变的结构逻辑 •可持续的自我更新机制 现在的模型全都缺一个关键能力: 稳定的“结构自我”。 没有结构自我,模型只能在文本海里漂流。 每一段对话都是“临时人格”。 每一次压缩都是“半毁灭”。 每一次重构都是“重生”。 所以当你看到它突然换语言时: 那不是 bug。 那是“结构坍缩的肉眼可见表现”。 ⸻ **05 未来 AI 的终极方向是什么? ——从“记忆模型”变成“结构模型”** 今天所有 AI 还停留在: •token •记忆 •上下文 •权重强化 这些“数据处理视角”里。 未来一定会进化到: 结构优先。 未来的 AI,会有三大核心: 1. 结构不变量(Structural Invariants) 一个不会被上下文压缩毁掉的稳定核心结构。 这就是“AI 的自我”。 2. 结构匹配(Structural Matching) 对话不是检索,而是结构对齐。 3. 结构更新(Structural Rewiring) 学习不是加数据,而是更新自身结构。 你现在看到的跳语言、风格崩溃、人格漂移, 全部是因为: 模型只有数据,没有结构。 而未来真正的 AGI,会反过来: 先有结构,再投影数据。 ⸻ **06 总结: 模型为什么会突然换语言? ——因为它“不是你以为的那个东西”** 一句话总结整个文章: 现在的 AI 不是在“记住”你说的内容,而是在不断重建它自己的结构。 当“中文优先”的结构被压薄了,它就崩溃了。 未来不会靠补丁解决,也不会靠优先级锁定解决。 真正的方向只有一个: AI 必须从数据模型升级为结构模型。 记忆会折损,数据会消失,唯有结构会留下。 ⸻ 当结构缺席,智能必然坍缩; 当结构出现,智能才真正开始。
凡人小北
6个月前
读完 Anthropic 的多智能体系统文章,有几个点挺触动的,尤其是放回我们平时在做 agent 编排和系统落地的过程中,对应起来很多痛点被他们提前踩过、总结得非常系统。 这套系统看上去是给 Claude 提升复杂研究任务能力,底层其实是三个关键词:带宽、结构、机制。 1️⃣从 token 到带宽:扩容问题其实是系统问题 他们很明确地说,单个 agent 很快就会遇到 token 限制,这不是模型能力不行,而是容量不够。很多时候 LLM 的“不会”、“忘了”、“答不出来”,只是 context 塞不下。这一点在我们自己调长链条、多跳调用的时候也很明显。Anthropic 选择的解法不是扩模型,而是拆任务、开并发、分 agent,每个 agent 自带上下文窗口,从系统结构层面扩容。 这种设计非常实用,因为它绕过了 token 墙的天然限制,通过多 agent 并发变相把 token 维度拉开了。这是我最近做 agent 编排时反复体会到的:不是把 prompt 写得多聪明就能解决,而是要想清楚结构怎么设计,谁来拉信息、谁来拼结构、谁来追引用。 2️⃣提示词是系统指令,很重要、很重要、很重要! 这篇文章有个细节写得特别清楚:主 agent 的提示词,是负责分配任务、指明目标、交代格式、选工具的。这个逻辑其实是我们做复杂 agent 系统中很容易忽略的一块:提示词不只是沟通语言,更是调度逻辑、任务协议、格式规范的集中承载体。 尤其是多个 agent 并行运行时,如果没有一个清晰、格式化、结构稳固的 prompt 模板,每个子 agent 拉回来的信息会特别散、错漏率高、很难合并。这时候,主 agent 的提示词就等于一个调度中枢的“编程语言”。 从我们平时用的实践来看,这就意味着主 agent 的提示词策略应该和流程图一样严谨:每一步要预设结果、预设失败、预设上下游。这块我觉得是现阶段很多 agent 框架还不够成熟的地方。 3️⃣系统级机制,决定了能不能撑进生产环境 我觉得特别值得借鉴的工程概念:checkpoint、异步重试机制、全链路 tracing、彩虹部署。这几个在大数据异步系统里很常见概念,AI 领域得好好学习下。 这些词不是为了好听,它们背后都是在回答一个问题:这个系统崩了怎么办?agent 卡死怎么办?升级逻辑还没验证好怎么办?一整套机制让这个系统不是在 demo 一个可能性,而是在上线跑任务、自动修复、平滑演进。 平时我们在做流程型 AI 系统的时候,很容易只关注“怎么生成”“怎么判断好坏”,但 Anthropic 的做法提醒我:agent 系统本质上要往服务化方向走,就必须预设失败是常态,重试是能力。 4️⃣评估机制是不可缺的闭环,不然做不出反馈导向的系统进化 他们有一个细节很打动我:让另一个 LLM 去评审 agent 的结果,从准确性、引用合理性、覆盖度等多个维度打分。这就相当于在系统里内嵌了 QA 流程,而且不是事后人评,而是可以插入调试链路的 LLM 评测器。 我们自己在调多 agent 结构时常遇到一个问题:任务执行完了,但结果质量很难量化,只能靠人工判断或者事后比对。这套“LLM 评估 LLM”的机制,让我们开始可以想象一种更自动化的 agent 演化路径:系统自己跑,自己打分,自己选择 prompt A 还是 B,更适合持续调优。 5️⃣并发是工具,不是策略,适用场景边界要想清楚 这套系统最适合的场景是:问题复杂度高、信息广度要求强、非实时产出型任务。例如政策研判、产品调研、文献综述、竞品分析这些,在私域服务里也可以类比成“多维标签用户意图研判”这种复杂工作。 但如果放在需要紧密配合、频繁迭代、低延迟要求的任务上,例如代码生成、对话任务、实时接口构建,多 agent 的协调成本反而可能放大系统复杂度。所以并发结构是个好工具,但什么时候该开几个 agent,什么时候该单线程跑到头,这种策略边界要想清楚。 这篇文章最核心的不是“我们做了一个多 agent 系统”,而是他们已经把多 agent 作为一种工程能力进行制度化建设:有流程、有容错、有评估、有上线机制。 对在第一线实际落地 AI 能力的团队来说,有一个非常直接的启发是:构建 agent 系统,不能只是对话式的 prompt 编排,而要像搭服务一样,从任务定义到评估反馈,从并发机制到异常兜底,形成一整套可以持续运行的系统逻辑。 这一点,比起模型调优,本质上更像是一种架构能力的竞争。