#技术伦理

宝玉
3周前
FT:计算机科学家杰弗里·辛顿:“AI会让少数人更富,多数人更穷” “人工智能教父”畅谈:人类的“唯一希望”,中国的优势,以及机器何时将超越我们 我提前了十分钟到,但杰弗里·辛顿(Geoffrey Hinton)已经等在了多伦多一家雅致的餐吧——里士满车站(Richmond Station)的门厅里。这位计算机科学家——人工智能领域的先驱、诺贝尔物理学奖得主——之所以选在这里,是因为他曾与加拿大总理贾斯汀·特鲁多(Justin Trudeau)在此共进午餐。 我们穿过一个充满工业风、感觉很潮的酒吧,来到一间嘈杂的后厅,里面已经坐满了食客。辛顿摘下他那只旧旧的绿色谷歌科学家背包——这是他之前工作单位的纪念品。因为慢性背伤,他需要用背包当坐垫,好让身体坐直。 他像猫头鹰一样,白发从眼镜框边探出来,低头看着我,问我大学学的是什么专业。“因为如果对方有科学学位,你解释事情的方式就会不一样。”我没有。而特鲁多,至少还“懂点微积分”。 这位被誉为“人工智能教父”的学者,如今已习惯于向世人解释他毕生的心血,因为这项技术正开始渗透到我们生活的每个角落。他见证了人工智能如何从学术圈——他几乎整个职业生涯都在那里度过,包括在多伦多大学的二十多年——走向主流,被那些手握重金、渴望触达消费者和企业的科技公司推向风口浪尖。 辛顿因在20世纪80年代中期的“基础性发现与发明”而获得诺贝尔奖,这些成果促成了“基于人工神经网络的机器学习”。这种大致模仿人脑工作方式的方法,为我们今天触手可及的强大人工智能系统奠定了基础。 然而,ChatGPT的问世以及随之而来的人工智能开发热潮,让辛顿停下了脚步。他从一个技术的加速者,转变为一个对其风险大声疾呼的警示者。在过去的几年里,随着该领域的飞速发展,辛顿变得极度悲观,他指出人工智能有可能对人类造成严重伤害。 在两个小时的午餐中,我们谈论了许多话题:从核威胁(“一个普通人在AI的帮助下很快就能制造出生物武器,这太可怕了。想象一下,如果街上的普通人都能制造核弹会怎样”)到他自己使用AI的习惯(它“非常有用”),再到聊天机器人如何在他最近的分手中意外地成了“第三者”。 “这对我来说显而易见。你和这些东西交谈,问它们问题,它能理解,”辛顿继续说道。“技术圈里几乎没人怀疑这些东西会变得更聪明。” 辛顿在该领域的泰斗地位毋庸置疑,但也有人,甚至包括业内人士,认为现有技术不过是一种复杂的工具。例如,他的前同事、图灵奖共同得主杨立昆(Yann LeCun)——现任Meta首席人工智能科学家——就认为,支撑ChatGPT等产品的大语言模型(Large Language Models, LLM)能力有限,无法与物理世界进行有意义的互动。对于这些怀疑论者来说,这一代人工智能还无法达到人类的智能水平。 辛顿说:“我们对自己的心智知之甚少。”但对于人工智能系统,“是我们创造了它们,构建了它们……我们的理解水平远超对人脑的理解,因为我们知道每个神经元在做什么。”他说话时充满信心,但也承认存在许多未知。在整个谈话过程中,他很坦然地陷入长时间的思考,然后得出结论:“我不知道”或“没头绪”。 辛顿于1947年出生在伦敦西南部的温布尔登,父亲是昆虫学家,母亲是学校教师。在剑桥大学国王学院,他辗转于多个学科,最终选择了实验心理学作为本科学位,并在20世纪70年代初转向计算机科学。尽管神经网络(neural networks)曾被计算机科学界轻视和摒弃,但他始终坚持研究,直到2010年代取得突破,硅谷才开始拥抱这项技术。 当我们喝着汤时,房间里嘈杂的声响,与这位轻声细语、深思熟虑地谈论人类生存问题的长者形成了鲜明对比。他激情澎湃地提出了一个方案,来应对那些由“雄心勃勃、争强好胜的男人们”开发的现代人工智能系统所带来的风险。这些人设想人工智能成为个人助理。这听起来似乎无伤大雅,但辛顿不这么认为。 “当助理比你聪明得多的时候,你如何保住自己的权力?我们只知道一个例子,那就是一个智慧得多的生物被一个智慧得少的生物所控制,那就是母亲和婴儿……如果婴儿无法控制母亲,他们就会死掉。” 辛顿认为,人类“唯一的希望”是把人工智能设计成我们的母亲,“因为母亲非常关心孩子,会保护孩子的生命”和成长。“这才是我们应该追求的关系。” “这可以作为你文章的标题,”他笑着说,用勺子指了指我的记事本。 他告诉我,他以前的研究生伊利亞·蘇茲克維(Ilya Sutskever)也认同这个“母婴”方案。蘇茲克維是顶尖的人工智能研究员,也是OpenAI的联合创始人。在试图罢免首席执行官萨姆·奥尔特曼(Sam Altman)失败并离开OpenAI后,他现在正在自己的初创公司Safe Superintelligence开发新系统。但我猜测,奥尔特曼或埃隆·马斯克(Elon Musk)更有可能赢得这场竞赛。“是的。”那你更信任他们中的哪一个? 他停顿了很久,然后回忆起2016年共和党参议员林赛·格雷厄姆(Lindsey Graham)被问及在唐纳德·特朗普(Donald Trump)和特德·克鲁兹(Ted Cruz)之间选择总统候选人时的一句话:“这就像是被枪杀还是被毒死。” 说到这里,辛顿建议换个安静点的地方。我试图吸引忙碌的服务员的注意,但没成功。他却突然站起来开玩笑说:“我去跟他们说,我可以说我跟特鲁多一起来过这儿。” 换到门口的吧台高脚凳上坐定后,我们讨论了人工智能何时会达到超级智能(superintelligent)——届时它可能拥有超越人类的谋略。“很多科学家都认为在5到20年之间,这是最靠谱的猜测。” 虽然辛顿对自己的命运很坦然——“我已经77岁了,反正也快到头了”——但许多年轻人可能会对这种前景感到沮丧;他们该如何保持积极? “我真想说,‘他们为什么要保持积极?’也许如果他们不那么积极,反而会做得更多,”他用一个问题回答了我的问题——这是他惯常的习惯。 “假设你用望远镜看到一场外星人入侵,10年后就会抵达地球,你会说‘我们如何保持积极?’吗?不,你会说,‘我们到底该怎么应对?’如果保持积极意味着假装这一切不会发生,那人们就不应该保持积极。” 辛顿对西方政府的干预不抱希望,并批评美国政府缺乏监管人工智能的意愿。白宫称必须迅速行动,发展技术以击败中国并保护民主价值观。巧的是,辛顿刚刚从上海回来,还倒着时差。他在那里与一些政治局成员开了会。他们邀请他去谈论“人工智能的生存威胁”。 “中国很重视这件事。很多政界人士都是工程师出身。他们理解这个问题的深度,是律师和销售员无法比拟的,”他补充道。“对于生存威胁,只要有一个国家想出应对办法,就可以告诉其他国家。” 我们能相信中国会维护全人类的利益吗?“这是次要问题。人类的生存比过得舒不舒服更重要。你能相信美国吗?你能相信马克·扎克伯格(Mark Zuckerberg)吗?” 随着我们的中等熟度三文鱼端上桌,卧在甜玉米浓汤上,科技公司开发人工智能的动机也被摆上了台面。辛顿一边说,一边用一片鱼肉蘸着盘里的酱汁。 他之前曾主张暂停人工智能开发,并签署了多封信件,反对OpenAI转型为营利性公司——马斯克正试图在一场进行中的诉讼中阻止这一举动。 谈论人工智能的力量常常被说成是纯粹的炒作,目的是为了抬高开发它的初创公司的估值,但辛顿说,“一个说法可以既对科技公司有利,又同时是事实”。 我很好奇他在日常生活中是否经常使用人工智能。原来,ChatGPT是辛顿的首选产品,主要用于“研究”,但也用来做一些诸如询问如何修理烘干机之类的事情。然而,它甚至还出现在他最近与交往多年的伴侣分手的故事里。 “她让ChatGPT告诉我,我就是个渣男,”他说,并承认此举让他很惊讶。“她让聊天机器人解释我的行为有多恶劣,然后把内容给了我。我并不觉得自己是渣男,所以这并没有让我感觉太糟……我遇到了一个我更喜欢的人,你知道的,事情就是这样。”他笑了,然后补充道:“也许你不知道!” 我忍住了八卦前任的冲动,转而提到我刚庆祝了我的第一个结婚纪念日。“希望这暂时不会成为你的问题,”他回答道,我们都笑了起来。 **辛顿吃饭的速度快得多,**所以当他接到姐姐的电话时,我松了一口气。他告诉姐姐自己正在“一家非常嘈杂的餐厅”接受采访。他的姐姐住在塔斯马尼亚(“她想念伦敦”),哥哥住在法国南部(“他也想念伦敦”),而辛顿自己住在多伦多(当然,也想念伦敦)。 “所以我用从谷歌拿到的钱,在汉普斯特德西斯公园(Hampstead Heath)南边买了一座小房子”,这样他全家,包括他从拉丁美洲领养的两个孩子,都可以去住。 辛顿的谷歌钱来自于2013年卖掉的一家公司。这家公司是他和蘇茲克維以及另一位研究生亚历克斯·克里热夫斯基(Alex Krizhevsky)共同创办的,他们构建了一个能以人类水平的准确度识别物体的AI系统。他们卖了4400万美元,辛顿本想三人平分,但他的学生们坚持让他拿40%。交易完成后,他们加入了谷歌——辛顿在那里工作了十年。 他卖公司的动机是什么?为了支付他患有神经多样性(neurodiverse)的儿子的护理费用。辛顿“估算他大概需要500万美元……而我从学术界是拿不到这笔钱的”。他在脑子里算了算,税后从谷歌拿到的钱“略微超出了”这个目标。 他于2023年离开了这家科技巨头,并在接受《纽约时报》采访时警告了该技术的危险。媒体报道称,他辞职是为了能更坦率地谈论人工智能的风险。 “每次我和记者交谈,我都会纠正这个误解。但这从没什么效果,因为那个故事太吸引人了,”他说。“我离开是因为我75岁了,我的编程能力不如从前了,而且Netflix上还有一大堆我没来得及看的东西。我已经非常努力地工作了55年,我觉得是时候退休了……而且我想,既然我都要走了,我正好可以谈谈那些风险。” 科技高管们常常描绘一幅乌托邦式的未来图景,人工智能将帮助解决饥饿、贫困和疾病等宏大问题。辛顿曾因癌症失去了两位妻子,他对医疗保健和教育的前景感到兴奋——教育是他非常关心的领域,但对其他方面则不然。 “实际会发生的是,富人将使用人工智能来取代工人,”他说。“这将造成大规模失业和利润的急剧增长。它会让少数人变得更富,而大多数人变得更穷。这不是人工智能的错,这是资本主义制度的错。” 奥尔特曼和他的同行们曾建议,如果劳动力市场对人口来说变得太小,可以引入全民基本收入(universal basic income),但这“无法解决人的尊严问题”,因为人们从工作中获得价值感,辛顿说。他承认想念他的研究生们,可以和他们碰撞想法或向他们提问,因为“他们年轻,理解事物更快”。现在,他转而问ChatGPT。 这会导致我们变得懒惰和缺乏创造力吗?认知外包(Cognitive offloading)是目前正在讨论的一个概念,即人工智能工具的用户将任务委托出去,而没有进行批判性思考或记住检索到的信息。又到了打比方的时候了。 “我们穿衣服,因为穿衣服,我们的毛发就变少了。我们更容易因寒冷而死,但前提是我们没有衣服穿”。辛顿认为,只要我们能接触到有用的人工智能系统,它就是一个有价值的工具。 他看了看甜点选项,并确保这次自己先点:草莓配奶油。巧的是,这也是我想要的。他要了一杯卡布奇诺,我要了一杯茶。“这是我们产生分歧的地方。” 奶油实际上是微微融化的冰淇淋,在我描述一个在硅谷司空见惯,但对大多数人来说如同科幻的场景时,它正慢慢变成液体:我们幸福地生活在“具身AI”(embodied AI)——也就是机器人——中间,并随着我们将人造部件和化学物质添加到身体中以延长生命,而慢慢变成赛博格(cyborgs)。 “那有什么问题吗?”他问。我们会失去自我意识和作为人的意义,我反驳道。“那又有什么好的呢?”他回应道。我试图追问:这不一定非得是好的,但我们将不再拥有它,那就是灭绝,不是吗? “是的,”他说,停顿了一下。 “我们不知道将会发生什么,我们毫无头绪,那些告诉你将会发生什么的人只是在犯傻,”他补充道。“我们正处于历史的一个节点,一些惊人的事情正在发生,它可能好得惊人,也可能坏得惊人。我们可以猜测,但事情不会一成不变。” 克里斯蒂娜·克里德尔是《金融时报》驻旧金山的科技记者,负责报道人工智能领域
宝玉
1个月前
推荐阅读:《AI 会取代人类思考吗?我们为什么仍要亲手写作和编程》 作者:Simon Späti 重新学习思考,警惕对 AI 的依赖。 每天关于 AI 的(吹捧的或无聊的)文章层出不穷。用它没问题,大家也都在用,但我们仍然需要打磨自己的手艺,并努力去思考。 就像 DHH(David Heinemeier Hansson,Ruby on Rails 框架创始人)所说: 精通某项技能比一直等着 AI 完成任务要有趣得多。 在我看来,AI 让我们不快乐的概率非常高。用,当然可以,但不能事事都用。我们可以用它来探索新知、梳理历史脉络,或者制作图表(比如用 Canva、Figma),但绝对不能用它来写作(或编程)。世界总需要有人贡献新的知识和见解,而 AI 无法自我训练。因此,文章、书籍和文字仍将被创作,当人人都依赖 AI,导致其发展停滞时,作家的价值反而会更加凸显。 从长远来看,这是一种损失——人们将停止思考和学习。时间会证明一切。我的浅见是,如果你在某个领域已是资深专家,你会比 AI 更懂。 Bsky 何时使用 AI 的指南 我从 ThePrimeagen 的一个视频中听到一个观点:这取决于你决策的影响有多长远。短期内,用 AI 自动补全代码没问题,但让它做架构设计这样重大的决策,绝对不行。 Image 这张图的横轴是时间,纵轴是错误数量。它表明,我们让 AI 参与的决策越是影响深远(比如系统架构),它产生的错误就可能越多。 如果我们用它来快速补全代码,或者写一个定义清晰的算法函数,那么出错的概率就小。在初始阶段,你可能会提升 20% 的效率;但到了后期,你失去的会更多。 这就像现实生活中,我等待决策的时间越长,掌握的信息就越多,做出的决定就越好。这正是 Shape Up 工作法所倡导的,决策周期最长为 6 周,不制定更长远的路线图和积压任务。使用 AI 也是同理,因为它的所有输出都是基于概率预测的。 Forrest Brazeal 的另一张图也很有启发性: Image 同时,也要牢记什么对你的应用场景最重要,正如 Thomas Ptacek 在《我的那些 AI 怀疑论朋友都疯了》一文中所展示的: Image 毫无灵魂 没人想读毫无灵魂的文字,即使它写得还不错,你又能从中得到什么呢?我认为这是一个巨大的陷阱,人们只有在时间流逝后才会意识到。当然,AI 能提供帮助,每个人在“某些”任务上都需要它们,但不应是写作本身。 归根结底,大语言模型 (LLM) 和 AI 需要引导,它们只是概率的产物。另见 亲手写作。 分心 我认为我们将比以往任何时候都更容易分心。我们甚至没有两秒钟的思考时间,Grammarly、Copilot 或 Cursor 就会跳出建议。于是,我们不再独立思考,只是随波逐流,渐渐失去了主导权。 这让我想起最近写的一篇文章《寻找心流》。更多关于“不要事事依赖 AI,否则你会停止思考和学习”的讨论,请见 AI 的使用 和 写作之难。 别误会 别误会,我自己也每天都用 AI,但用得更审慎。我关掉了 Grammarly 和 Copilot(很久以前就关了),这样我才有空间去思考和学习。偶尔用一两次没问题,但如果处处都用,你不仅会失去学习新技能的机会,也会失去其中的乐趣。 关于“人机协作智能”(LLM Collaborative Intelligence, LCI)的讨论很有趣。当然,它会带来很多好处,但我不确定这些 AI 产生的“洞见”能否与人类历经艰辛后感受、感知或体验到的洞见相提并论。所以,是的,我对此没有太多期望,也不希望它来创造新的见解。因为那是我工作中真正有趣的部分 :) 锻炼一项技能 事情永远不是“全有”或“全无”,而是在于度的把握。学习的问题在于,如果你频繁使用 AI,我认为你其实学不到太多东西。写作时只是复制粘贴,编程时只是不停地按 Tab 键。学习的过程消失了。如果这种情况持续下去,我们的大脑就不再习惯于学习,更严重的是,不再习惯于思考。就像记忆一样,我们现在还能记住几个手机号码?很少了。但在早期用电话的时代,我能记住很多,因为我每天都在训练这个能力。 这完全是一个熟能生巧的问题。我为自己总结出——虽然不一定适用于每个人——我发现自己不再学习或思考了。坦白说,也失去了乐趣。这主要是在我熟悉的领域。 在其他领域,比如创作一张图片(就像我为这篇文章做的那张 😆),或者用 HTML/CSS 更新我网站的首页,这些事因为不常做,AI 帮我省了很多时间。但我得说,除了学会了如何给 Claude Code 写提示词,我并没学到任何新东西。这始终是一种权衡,不是吗?:)
Suyutong
3个月前
罗帅宇,被杀死在中国的「缅北诈骗园」。 当我在痛骂紫蜡烛的时候,不会包括罗帅宇这个眼神明亮、心有公义的人,也不包括为了孩子的尊严,拒绝刽子手闭嘴钱的罗帅宇的家人。 东野圭吾小说《变身》,就曾写过医院里的医生对病患,只要是签过自愿捐赠器官协议的,会连块皮肤也不给剩。 在我小的时候就曾思考过科学、技术的伦理边界这种问题,人们总以拯救生命、爱为名,不断突破伦理的边界,连对胚胎基因编辑、人工病毒都被放行。 可是紫蜡烛们根本不思考这些问题,在怂人洪流中像烛一样活着,偶尔甩出几个在信息时代获得的名词,比如「理性」、「宽容」、「公义」等来做自己的保护色,以使自己像个人的样子。 可是,紫蜡烛真的是人吗? 2008年512地震,我曾在地震灾区看到豆腐渣工程上那散落的书包和作业本,那些孩子只在世界上活泼泼的生活过7年。一开始,他们的父母还在维权,两年过去,他们中的很多人数着政府的闭嘴钱,好像这些孩子都没有来过这个世界。有人会说他们乐观,他们不应只停留在过去的悲痛中,可是世间最不应该放弃的不是尊严吗?孩子的命都没有了,但是父母必须要捍卫他们的尊严啊; 紫蜡烛常常陷于技术优越感中,主张爱与和平、平等的真紫蜡烛们还会为贺建奎的基因编辑成果而振奋,为中国电动车技术而骄傲,却从来不知道无论是在技术发达还是不发达的世界,尊严都是作为一个人最有重要的组成部分。 不知道这些的紫蜡烛都该死!不用等着出栏。 如果我们知道这么简单的道理的话,别说中共,任何一种垃圾权力也不会在中国如此霸道,今天罗帅宇又能以他的死亡代价唤醒多少半人?
宝玉
4个月前
WIRED:当AI智能体犯错时,谁该承担责任? 随着谷歌和微软大力推广能够自主行动的AI智能体技术,人们正逐渐意识到:当多个智能体彼此互动并且触碰到法律底线时,到底该由谁来承担责任? 过去一年中,资深软件工程师杰伊·普拉卡什·塔库尔(Jay Prakash Thakur)利用业余时间,不断尝试开发能够自主订餐、甚至独立设计移动应用程序的AI智能体。他研发的智能体虽然表现惊人,但也暴露了一个新的法律问题:当这些智能体犯错并造成损失时,究竟谁来承担责任? 什么是AI智能体? AI智能体(Agents)指的是能独立完成任务的人工智能程序。企业可以利用智能体来自动完成客服回复、支付账单等事务。与我们熟悉的ChatGPT不同,智能体不只是听命于用户指令,更能自主行动,微软、亚马逊和谷歌正期望这些智能体承担更复杂的任务,并且无需太多人工干预。 科技行业的雄心甚至更大,未来将由多个智能体组成的系统取代整个工作团队。这种技术的好处很明显:为公司节省大量的时间和人工成本。权威市场研究机构Gartner预测,到2029年,有80%的常规客户服务问题将由智能体解决。自由职业平台Fiverr数据显示,近几个月以来,“AI智能体”的搜索量暴增了18347%。 智能体出现问题后,谁担责? 塔库尔虽然目前在微软任职,但他的本职工作并不涉及智能体。然而,他从2024年在亚马逊工作期间就开始研究微软的智能体开发工具AutoGen,开发了一些多智能体的原型。他最大的担忧是,如果不同公司的多个智能体之间沟通失误而导致严重损失,法律责任该如何分配?他形容:“想找出责任方就像根据几个人零散的笔记,去还原一场复杂的对话一样困难。” 从谷歌离职、现任律所King & Spalding的律师本杰明·索夫特尼斯(Benjamin Softness)指出,出了问题的人通常都会找那些财力雄厚的大公司索赔。换句话说,即使出错的是普通用户,但企业可能依旧会成为主要的索赔对象,因为追究普通消费者的责任通常没有经济价值。保险业已经开始提供专门针对AI智能体的保险,以帮助企业应对这些风险。 AI智能体会犯哪些错误? 案例一:“无限使用”的误解 塔库尔开发的一个原型中,有两个智能体相互协作。其中一个负责寻找开发应用程序所需的工具,另一个负责总结工具的使用条款。 在一次测试中,负责搜索的智能体找到了一款工具,说明上写着:“企业用户每分钟支持无限请求次数”,但负责总结的智能体错误地省略了“企业用户”和“每分钟”这些关键字眼,导致另一个智能体误以为自己可以无限次地请求。这次失误虽未造成损失,但实际使用时,很可能导致整个系统崩溃。 案例二:“洋葱圈”变成“多加洋葱” 塔库尔还模拟了一个餐厅点餐系统,用户可以通过AI智能体点餐,再由多个机器人协作完成烹饪。虽然90%的情况都顺利完成,但偶尔也会出现“我要洋葱圈”却变成了“多加洋葱”,或者漏掉某些食物的情况。更糟糕的情况是,如果顾客存在食物过敏,后果可能非常严重。 案例三:购物比价智能体误导消费者 另一个案例中,比价智能体推荐了价格便宜的商品,却错误地给出了价格更高的网站链接。如果智能体被设置成自动下单,消费者就可能多花冤枉钱。 这些问题揭示,即使是看似简单的任务,AI智能体也可能犯下代价高昂的错误。过去一年,就有AI生成的航空公司优惠券被判定为具有法律约束力的案例,还有AI生成的法律引用文件出错,开发商不得不向法庭道歉。 如何避免智能体犯错? 塔库尔认为,目前最可行的办法是增加人为确认步骤,例如让顾客确认点餐内容。然而,这种方式却违背了开发智能体的初衷——减少人为干预。 业内的一种主流思路是再增加一个“裁判”型智能体,负责监督其他智能体的运行情况,及早发现并纠正错误。但专家们也担心,这种方案可能导致智能体系统变得臃肿复杂。 法律层面的挑战 近期旧金山举行的一场法律会议上,包括OpenAI的高级法律顾问约瑟夫·费尔曼(Joseph Fireman)在内的法律人士认为,现行法律会在一定程度上让发出指令的用户承担部分责任,特别是在用户被明确告知智能体的限制时。 但另一些法律专家提出,普通消费者不可能强迫企业承担责任,尤其在用户甚至可能依赖智能体去审核法律条款的情景下,情况将更加复杂。Anthropic公司的法律顾问丽贝卡·雅各布斯(Rebecca Jacobs)也指出:“智能体是否能够代表用户绕开隐私政策和服务条款,将成为一个非常有趣的问题。” 律师达扎·格林伍德(Dazza Greenwood)则呼吁企业在智能体出错率过高时谨慎行事:“如果你的‘加洋葱’失误率高达10%,那么根本不该急于上线。” 总结:现在还不能完全放心地交给AI智能体 AI智能体技术虽然前景广阔,但显然仍有许多问题需要解决。从技术角度看,我们距离真正无需人为干预、彻底可靠的智能体还很远;而从法律角度,AI犯错后的责任归属更是一个巨大的难题。因此,目前用户还无法安心地“翘起脚”完全依靠智能体。