时政
财经
科技
虚拟货币
其他
登录
#向量数据库
关注
Mr Panda
3周前
向量数据库选 Qrant 还是 Milvus ?
#向量数据库
#Qrant
#Milvus
#数据库选型
分享
评论 0
0
凡人小北
2个月前
建议大家,别在简历里写“熟悉 RAG”了,或者面试前好好学学。 我面试过不少人,说熟悉 RAG,结果一问就穿帮。 RAG 绝大多数工程师只碰到前半段: 拿个 LangChain,上个向量库,把 chunk 和 embedding 丢进去跑个检索; 看起来跑通了,实际啥也没掌握。 但只要你简历上写了,面试官就会问你下面这些(当然不写也不一定逃得过): - chunk 是怎么切的?固定?语义?还是自适应? - embedding 模型选型和维度怎么来的? - rerank 用没用?怎么融合 BM25 和 dense 检索? - prompt 是你写的吗?有没有评估 hit rate、hallucination? 说实话,不是算法出身的人,如果没系统做过推荐系统或者检索优化,很多人说不清。 RAG 的前半段几乎就是推荐系统那套召回 + 排序 + 精排的逻辑: embedding = 向量化特征建模 检索 = 多路召回 rerank = 打分排序 但后半段还多了 prompt 设计、上下文拼接、生成模型行为控制这几个大坑。 所以我劝一句: RAG 真不是写个向量库调用就叫“熟悉”。写了,面试官只会当你能答全链。 别轻易说“熟悉”或“掌握”,你扛不住问。
谷歌Deep Research:AI操作系统雏形?· 37 条信息
#RAG面试
#LangChain
#向量数据库
#检索优化
#prompt设计
分享
评论 0
0
宝玉
6个月前
DailyDoseofDS 这个图把传统 RAG 和 Agentic RAG 之间的差异分的比较清楚。 传统 RAG 就是先把文档向量化保存到向量数据库,然后在用户查询时,对用户的问题也做向量化,从向量数据库中找到相关的文档,再把问题和找出来的结果交给 LLM 去总结生成。 这种方式的优点就是简单,由于不需要太多次和 LLM 之间的交互,成本也相对低,但缺点是经常会因为做相似检索时,找不到合适的结果,而导致生成结果不理想。 Agentic RAG 则是在过程中引入 AI 智能体: - 先对用户的查询内容用智能体进行重写,比如修正拼写错误等 - 智能体判断是不是还需要额外的信息,比如可以去搜索引擎搜索,或者调用工具获取必要的信息 - 当 LLM 生成内容后,在返回给用户之前,让智能体去检查答案是不是和问题相关,是不是能解决用户的问题,如果不行,则返回第一步,修改查询内容,继续迭代,直到找到相关的内容,或者判断该问题无法回答,告知用户结果。 当然这样做的缺点是成本要相对高一些,并且耗时会更长。
#RAG
#Agentic RAG
#向量数据库
#LLM
#自然语言处理
#信息检索
#数据处理
分享
评论 0
0
biantaishabi
7个月前
给我的机器人加了几个工具: 编辑文件,他需要编辑部分而不是每次都是全部更新整个文件; 增加经验,(这个还需要一个搜索的,所以以后应该会把他每天批量移到一个向量数据库理让机器人搜索,以后动态构建系统提示词); 查文档的,这个项目比较简单让他读文件,还做了一个查rag的 我的机器人laoded了
#机器人
#编辑文件
#经验积累
#向量数据库
#系统提示词
#文档查阅
#RAG
分享
评论 0
0
个人主页
通知
我的投稿
我的关注
我的拉黑
我的评论
我的点赞