建议大家,别在简历里写“熟悉 RAG”了,或者面试前好好学学。 我面试过不少人,说熟悉 RAG,结果一问就穿帮。 RAG 绝大多数工程师只碰到前半段: 拿个 LangChain,上个向量库,把 chunk 和 embedding 丢进去跑个检索; 看起来跑通了,实际啥也没掌握。 但只要你简历上写了,面试官就会问你下面这些(当然不写也不一定逃得过): - chunk 是怎么切的?固定?语义?还是自适应? - embedding 模型选型和维度怎么来的? - rerank 用没用?怎么融合 BM25 和 dense 检索? - prompt 是你写的吗?有没有评估 hit rate、hallucination? 说实话,不是算法出身的人,如果没系统做过推荐系统或者检索优化,很多人说不清。 RAG 的前半段几乎就是推荐系统那套召回 + 排序 + 精排的逻辑: embedding = 向量化特征建模 检索 = 多路召回 rerank = 打分排序 但后半段还多了 prompt 设计、上下文拼接、生成模型行为控制这几个大坑。 所以我劝一句: RAG 真不是写个向量库调用就叫“熟悉”。写了,面试官只会当你能答全链。 别轻易说“熟悉”或“掌握”,你扛不住问。