时政
财经
科技
登录
#产品管理
关注
dontbesilent
3周前
假如说你卖的产品,明明没有这个功能,明明起不到这个效果,但是你又要宣传,怎么办? 答:做另外一个产品,也是你们家的,只看不卖,然后疯狂宣传这个不卖的产品 既然不卖,那无论我怎么宣传,都不是虚假宣传啦 ~ 接下来,用户自己会主动联想的
#营销策略
#虚假宣传
#产品管理
分享
评论 0
0
BillyHe
3周前
字节创始员工:如何做出好产品(1) 转自作者公众号:张晓东西南北 和一鸣的聊天 2014年3月,我在字节,刚入职5个月,准备离职——我之前在360的领导创业,希望我加入,我已经答应了,提了离职。有天晚上在工位,张一鸣突然说聊聊,我有点惊讶,找了个会议室聊聊 跟一鸣聊完,彻底改变了我对做产品的理解,同时我决定留在字节 首先,他说: 创业是一个赌概率的事,做DAU 1万、10万的产品,是能力问题,但做DAU 100万、1000万的产品,还是机遇问题,让我现在出去做一个像今日头条这种用户量级的产品(当时DAU已经100万+了),我也没有绝对的把握——你现在已经在一个创业赌中概率的团队了,离开加入另一个创业团队重新赌,这个动作很不理性 我表示认同,但还是想走,他问为什么?我说核心原因是我老领导答应了我一个事,他会拨出一部分资源帮我验证我的一个产品想法,我想试试。这个产品想法我想了很久,之前聊天跟一鸣也简单提过。他说那我们聊聊产品,聊聊这个想法 我的想法是: 当时推特崛起,所有人都觉得这是下一个社交信息平台,从最早的饭否,到新浪网易搜狐腾讯…所有大公司都杀进来,全都在做微博,甚至有创业团队的创业项目是做一个工具,一键把内容同时发到所有微博平台,最终新浪微博胜出,我是微博重度用户,重度到有时候周末不起床不下楼刷一天,没干别的,就刷微博 然后我发现这产品有个问题: 当你关注的人多了之后,你的首页信息质量会下降 比如你关注了李开复,他聊科技行业,你觉得可以看看,然后他又聊自己生活里的事,你觉得没什么好看。你关注了马伯庸,他发段子,你觉得很好看,但他又对社会新闻发表了意见,你觉得可以划走…… 于是乎,我冒出一个想法: 我们能不能设计一个产品,让发内容的人,在发的时候就选择内容类型:科技、搞笑、历史、军事、篮球……然后用户关注一个人的时候,可以选择在某个/某些领域下关注他,比如在科技领域关注李开复,在搞笑+历史领域关注马伯庸——这样,你关注了每个领域的专家,让这个领域的专家给你提供/推荐这个领域的信息,用专家推荐来解决信息质量下降的问题,然后你就可以得到一个完美的产品:一打开,全是高质量的、你感兴趣的、吸引你的内容 我当时沉迷这个想法,还用axure设计了产品原型,带动效的那种交互原型,怎么发、怎么关注……彻底沉迷 我跟不同的人聊过这个想法,很多是专业的产品经理,大家从用户心理聊到用户习惯,从社区如何养成聊到种子用户如何冷启动……各个角度,没有人能指出我这个想法到底哪里有问题,没有人能让我放弃这个想法 但张一鸣一句话就把这个想法击碎了: 你计算一下,一个新用户打开你这个产品后,要点多少次关注,才能得到一个可以看的首页,这样筛下来,有多少用户能完成这些操作? 我如雷灌顶,是,我们都知道产品每多一步,漏斗有多大,假设我今天有10000新增用户,进首页、找专家、选择某个/某些领域关注……这么筛下来,最终有多少用户首页有内容?这产品根本不成立,这是简单的小学算术问题——这还没算你得先有这么多领域的作者每天发东西,自己选择把内容发到某个/某些领域……全算进来,这个产品机制根本不可能运转 然后张一鸣说: 你思考产品能到这一步是好的,产品经理应该思考这些问题,不思考这些是不好的,但不能只到这一步,只到这一步是不够的。关于信息获取,我在饭否(他是饭否的技术负责人)的时候就在想了,这个问题我的结论是:只能靠推荐来解决,你不可能让用户自己操作来解决这个问题,关于信息获取的问题,中国思考最深入的前几个人,就在这里了 后来我知道,他这句话说的太保守了,关于信息获取的问题,全世界思考最深入的前几个人之一就在这里了——甚至没有之一,思考最深入的人,就在这里了 The rest is history 字节通过推荐解决信息获取的问题,从囧图段子到头条抖音TikTok,一路高歌猛进,取得了2014年无法想象的巨大成就,营收和利润都超过之前中国最大的互联网公司腾讯,直逼Facebook,现在短视频已经成为全世界每个国家的超级电视台(只要这个国家没封禁它),后面还会是超级电视购物,这一切,最初都源自张一鸣的一个认知: 信息获取的问题,只能靠推荐来解决 最后,一鸣说,看得出来你喜欢做产品,如果你想参与这种水平的产品讨论,你应该留下,到这里,我已经彻底服了,毫不犹豫的留下
#字节跳动
#张一鸣
#产品管理
#创业
#员工故事
#职场选择
分享
评论 0
0
歸藏(guizang.ai)
1个月前
老是问我有没有国内能用的 Vibe Coding 产品,这次真有了! 美团除了一个叫 Nocode 的产品 不止能写展示类的网页,相当复杂的多页面完整产品他也能一次性搞定 比如这个逻辑非常复杂仓库商品管理工具,居然一次就搞定了 👇下面是详细测试和介绍
#VibeCoding
#Nocode
#美团
#网页设计
#产品管理
#科技创新
分享
评论 0
0
Andrew Ng
5个月前
Writing software, especially prototypes, is becoming cheaper. This will lead to increased demand for people who can decide what to build. AI Product Management has a bright future! Software is often written by teams that comprise Product Managers (PMs), who decide what to build (such as what features to implement for what users) and Software Developers, who write the code to build the product. Economics shows that when two goods are complements — such as cars (with internal-combustion engines) and gasoline — falling prices in one leads to higher demand for the other. For example, as cars became cheaper, more people bought them, which led to increased demand for gas. Something similar will happen in software. Given a clear specification for what to build, AI is making the building itself much faster and cheaper. This will significantly increase demand for people who can come up with clear specs for valuable things to build. This is why I’m excited about the future of Product Management, the discipline of developing and managing software products. I’m especially excited about the future of AI Product Management, the discipline of developing and managing AI software products. Many companies have an Engineer:PM ratio of, say, 6:1. (The ratio varies widely by company and industry, and anywhere from 4:1 to 10:1 is typical.) As coding becomes more efficient, teams will need more product management work (as well as design work) as a fraction of the total workforce. Perhaps engineers will step in to do some of this work, but if it remains the purview of specialized Product Managers, then the demand for these roles will grow. This change in the composition of software development teams is not yet moving forward at full speed. One major force slowing this shift, particularly in AI Product Management, is that Software Engineers, being technical, are understanding and embracing AI much faster than Product Managers. Even today, most companies have difficulty finding people who know how to develop products and also understand AI, and I expect this shortage to grow. Further, AI Product Management requires a different set of skills than traditional software Product Management. It requires: - Technical proficiency in AI. PMs need to understand what products might be technically feasible to build. They also need to understand the lifecycle of AI projects, such as data collection, building, then monitoring, and maintenance of AI models. - Iterative development. Because AI development is much more iterative than traditional software and requires more course corrections along the way, PMs need be able to manage such a process. - Data proficiency. AI products often learn from data, and they can be designed to generate richer forms of data than traditional software. - Skill in managing ambiguity. Because AI’s performance is hard to predict in advance, PMs need to be comfortable with this and have tactics to manage it. - Ongoing learning. AI technology is advancing rapidly. PMs, like everyone else who aims to make best use of the technology, need to keep up with the latest technology advances, product ideas, and how they fit into users’ lives. Finally, AI Product Managers will need to know how to ensure that AI is implemented responsibly (for example, when we need to implement guardrails to prevent bad outcomes), and also be skilled at gathering feedback fast to keep projects moving. Increasingly, I also expect strong product managers to be able to build prototypes for themselves. The demand for good AI Product Managers will be huge. In addition to growing AI Product Management as a discipline, perhaps some engineers will also end up doing more product management work. The variety of valuable things we can build is nearly unlimited. What a great time to build! [Original text: ]
#软件开发
#产品管理
#人工智能
#原型设计
#需求增长
分享
评论 0
0
yesterday
5个月前
cursor 这类工具的出现,极大的拉开了“说的清楚”和“想不明白”的产品经理之间的差距。 当然在程序员之间也拉开了极大的差距。 别看吵来吵去,最后物以类聚人以群分后会发现,人群是分了,但不是按岗位来的。 那些能更好的利用这类工具的产品经理和程序员们,现在我们会发现,他们本来就是同一种人。 他们会想到一个功能实现之外用户有多少种不按预设来操作的方法和路径,他们不会讲出“正常人不会这么用”这么自大的话。他们知道业务逻辑成功的有一种,失败和错误却有一百种可能,都要考虑到。 他们只是之前的岗位名称,使用的工具,侧重点略有不同而已,但其实是同一类人。 cursor 只是放大了人和人的差别,和岗位没什么关系。
#工具效能
#产品管理
#程序员差异
#职场发展
分享
评论 0
0
个人主页
通知
我的投稿
我的关注
我的拉黑
我的评论
我的点赞