#Codex

宝玉
4天前
卧槽,我真解决了让 Codex 连续工作 8 小时的问题,上下文都不会爆掉! 方案就是让 Claude Code 去当监工监督 Codex 干活,大概的步骤如下: 1. 首先要让 Codex 生成一个任务的 TODO List,就是那种能一步步完成的 2. 然后让 Codex 更新 Agents md 文件,加上说明,如果输入 continue,要读取 TODO 文件,去选取任务,执行后更新 TODO 3. 让 Claude Code 去执行命令: > export TERM=xterm && codex exec "continue to next task" --full-auto 也就是 Claude Code 去启动 codex 并传入提示词 "continue to next task" 并且监控 codex 的执行,如果当前任务完成了,就杀掉进程,重新执行上面的指令下一个任务。 由于每次都是新的 session,所以 codex 的上下文每次用的不多,不会爆掉。 那么怎么保证 Claude Code 的 Context 不爆掉呢?毕竟codex输出的信息也不少 答案就是让 Claude Code 每次去启动 codex 和监控 codex 执行的时候,都起一个子 Agent,这样每个子 Agent 都有独立的上下文,主 Agent 只有子Agent完成的上下文,占用空间极小。 完整的提示词和运行效果在图1可以看到: > 帮我在当前目录下,新开一个agent,使用 export TERM=xterm && codex exec "continue to next task" --full-auto 命令开启一个 codex 进程, 注意观察任务执行情况,如果当前任务完成(任务运行时间较长,可以多等一会),就结束进程,然后重新开个agent运行相同指令让它继续 > 注意每次打开codex和监控它运行都调用一个新agent (Task Tool)来执行这个操作以避免主agent上下文太长 BTW: 监控 codex 执行这任务理论上来说 Gemini cli和 Codex cli 也能做,但是我没成功。
宝玉
1周前
Dario 说 AI 会写 90% 的代码,包括 Codex 团队也说它们大部分代码都是 Codex 完成的,这很容易造成一种误解:“软件工程师的岗位要被 AI 取代了”,但实际上并不完全是这样的,只是说明软件工程师工作的方式正在升级,对技能的要求也不一样了。 几个简单的方法可以判断: - 看 Anthropic、OpenAI 这些 AI 模型公司是不是还在大规模招聘软件工程师; - 看一个初中级程序员能不能用 Claude Code 或者 Codex 写出 Claude Code。 因为代码行数并不代表代码的价值,真正有价值的是专业人士基于业务需求用 AI 生成的并审查的代码。 实际上我自己的开发方式已经发生了很多变化: - 琐碎的事情几乎 100% 让 AI 完成,比如写自动化测试代码,比如一些提升效率的脚本 - Bug 让 AI 去修复,人工审查,验证 - 原型开发,完全由 AI 实现 - 人工设计完,让 AI 去实现一个模块,而不是从头手写代码,也不是以前那种和 AI 结对一边写一边确认的方式,而是完全 AI 去写 - AI 写完代码,先让 AI Review 代码,然后人工 Review,再合并 - 一些复杂的算法、POC,让 AI 帮我实现(我自己没能力或者没精力实现的),现在最新的 Codex 已经能帮我搞定一些复杂的技术问题了 一个凭感觉的对我自己量化的对我开发效率影响的数据: - GitHub Copilot 第一版的自动完成:效率提升 10% - Cursor: Tab + Chat 模式提升 30%+ - Cursor:Edit 模式 提升 50%+,不需要手动复制粘贴代码 - Claude Code:提升 100%+,第一个真正能用的 Coding Agent,很聪明,相对不够稳定 - Codex(GPT-5-Codex high): 提升 120%+,速度慢,但是结果很稳定,bug 少 也就是说现在借助 AI 辅助,我的开发效率至少提升一倍以上,这个进化速度确实惊人,超乎我的想象,如果你翻看我一年前的看法,当时我是没有这么乐观的。 但也不要忽视这样效率的提升背后需要的条件: - 需要懂代码:算法、数据结构、语言等等 - 需要一点技术管理经验:会对复杂任务分解拆分,管理多个 AI Agents 协作 - 提示词工程:能用提示词把想要 AI 实现的功能或者解决的问题描述清楚 - 代码和架构是 AI 友好的:对于 AI 训练丰富的代码 AI 生成是擅长的,如果都是内部的库或者使用量很少的编程语言或类库,AI 生成效率要大打折扣 这也意味着想要最大化的发挥 AI 编程的效率,本身需要有一定的软件开发经历,另一方面还要去学习 AI 相关的一些知识,去改变自己的一些使用习惯。 虽然说 AI 无法取代软件工程师,但可以看见有了 AI 辅助,软件工程师效率是能大幅提升的,至于这带来的连锁反应,比如团队会少招人,比如新人机会更少,这些确实也是在实实在在发生的事情。 未来会怎样?谁知道呢!