来自 Nature:Writing is thinking《写作即思考》 论大语言模型时代下,人类亲笔进行科学写作的价值。 撰写科学论文是科学方法中不可或缺的一环,也是交流研究成果的常规做法。然而,写作不仅仅是为了报告结果,它更是一种能发掘新思想、新观点的工具。写作促使我们进行结构化、有目的性的思考,而不是任由思绪如脱缰野马般混乱、跳跃。通过动笔写作,我们可以将多年来的研究、数据和分析梳理成一个逻辑连贯的故事,从而明确我们想传达的核心信息以及我们工作的影响力。这并非空谈玄理,而是有科学依据的。例如,科学证据表明,手写能促进大脑皮层的广泛连接,并对学习和记忆产生积极影响。 “我们在此呼吁,要继续重视人类亲笔进行科学写作的价值” 在大语言模型(LLM)时代,这个呼吁可能显得有些不合时宜。只要给出正确的提示,大语言模型就能在几分钟内生成整篇科学论文(甚至是同行评审报告),这似乎能在研究的“硬骨头”啃完之后,大大节省发表成果的时间和精力。然而,大语言模型因为无法承担责任,所以不能被视为作者,因此,我们不会考虑发表完全由大语言模型撰写的文稿(使用大语言模型进行文字编辑是允许的,但必须声明)。更重要的是,如果写作即思考,那么当我们阅读一份由 AI 生成的论文时,我们读到的究竟是大语言模型的“思考”,还是论文背后研究人员的思想呢? 目前的大语言模型也可能出错,这种现象被称为“幻觉”。因此,由大语言模型生成的文本需要经过彻底的检查和验证(包括每一条参考文献,因为它可能是凭空捏造的)。所以,目前的大语言模型究竟能节省多少时间,仍然是个未知数。编辑一篇由大语言模型生成的文本,可能比从头开始写一篇论文或同行评审报告更加困难和耗时,部分原因在于,你必须先理解其背后的逻辑才能进行修改。其中一些问题或许可以通过那些仅基于科学数据库进行训练的大语言模型来解决,正如本期中刘凤麟(Fenglin Liu)及其团队的一篇综述文章所概述的那样。这一切,尚需时间来证明。 当然,这并非否认大语言模型可以成为科学写作中的宝贵工具。例如,大语言模型可以帮助提升文章的可读性和语法水平,这对那些母语非英语的研究者来说尤其有用。大语言模型在搜索和总结各种科学文献方面也可能很有价值,它们还可以提供要点,协助进行头脑风暴。此外,大语言模型还有助于克服写作障碍,为研究发现提供不同的解释,或是在看似无关的主题之间建立联系,从而激发新的思想火花。 然而,若将整个写作过程完全外包给大语言模型,我们可能会失去反思自己研究领域的机会,也无法参与到那项充满创造力且至关重要的任务中——即将研究成果塑造成为一个引人入胜的叙事。而这种能力的重要性,无疑远远超出了学术写作和出版的范畴。