#路线证伪

Tz
10小时前
当神的铠甲太重,已经勒进肉里 —— "神"开始流血了 2025年11月6日,Sam Altman 发了一篇1200字的声明。 语气很诚恳。姿态很低。但你能感觉到,他在出汗。 同一周,北京的月之暗面团队发布了 Kimi K2。训练成本:460万美元。在 SWE-Bench Verified 这个专业代码生成测试上,它跑出了71.3%的成绩——超过了 GPT-5。 OpenAI 的 CFO 前一天刚说"可能需要政府融资支持"。第二天就改口。 这不是巧合。这是流血的声音。 //什么是"神"// 神不是某个人,是一套信念。 这套信念说:只有闭源、重资本、天价算力,才能训练出最强的模型。它的代言人是 OpenAI,是 Sam Altman,是那份横跨8年、总额1.4万亿美元的基础设施承诺清单。 1.4万亿是个什么概念? 相当于整个非洲大陆2023年的 GDP。相当于可以建造140个三峡大坝。相当于给全球每个人发200美元。 这笔钱,OpenAI 准备用来建数据中心、买芯片、铺光纤。他们说服了 Broadcom、Oracle、Microsoft、Nvidia。差点说服了政府。 但现在,DeepSeek 用560万美元训练出了 R1。 Kimi K2 用460万美元,跑通了1T参数的 MoE 架构。 这两个数字,一个是1.4万亿,一个是460万。 差了多少倍? 30万倍。 //为什么流血// 想象一下这个画面: OpenAI 每年烧掉数千亿美元,像一台巨型蒸汽机,轰隆作响,吞吐着电力和芯片。 而月之暗面的团队在北京的办公室里,用384个"专家"(这是 MoE 架构里的技术术语,可以理解为384个小型专业模型)、32B激活参数,在15.5万亿 token 的训练过程中实现了零损失尖峰。 什么叫零损失尖峰?简单说,就是训练过程全程稳定,不需要重启,不需要人工干预,不需要"救火"。 在 SWE-Bench 这样的专业代码生成任务上,Kimi K2 逼近了 GPT-5 的水平。在推理场景中,它打败了 Claude Opus 4 的部分能力。 更要命的是,这些模型开源。 任何人都可以下载权重,部署在自己的服务器上。跑100万 token 只需要0.15美元输入、2.5美元输出。OpenAI 的 API 定价?十倍以上。 Sam Altman 在声明里花了三段篇幅解释"我们不需要政府担保",又花了两段解释"我们的收入增长计划"。他说,OpenAI 今年年化收入约200亿美元,预计2030年要涨到数千亿。 这套叙事建立在一个假设上:闭源模型的性能壁垒能维持足够长的时间,让用户愿意为高昂的 API 付费。 但中国实验室正在粉碎这个假设。 如果 Kimi K2 用不到500万美元的单次训练成本,就能达到与 GPT-5 相近甚至部分超越的表现,那1.4万亿美元的基础设施蓝图到底在买什么? 是买保险吗? 是买垄断吗? 还是买一套已经过时的军备竞赛规则? //伤口在哪里// 伤口不在技术上。 OpenAI 依然有 GPT-5 Pro,依然有企业客户,依然有品牌优势。但伤口在"必要性"上。 举个例子。 OpenAI 会说,那20%的差距是关键——是在极端边缘案例下的稳定性,是企业级的安全保障,是能让 AI 做出科学突破的最后一跃。 但问题是,当 All-In 播客的主持人 Chamath Palihapitiya 公开说"我们已经将大量工作负载转移到 Kimi K2,因为它性能更好且便宜太多"时,这个20%的叙事就开始失效了。 因为大部分用户不需要那最后20%。 他们需要的是"足够好"+"便宜10倍"。 这就像你去买车。一辆车从0加速到100公里需要3.5秒,另一辆需要4.2秒。但前者要100万,后者只要10万。 大部分人会选哪个? DeepSeek 和 Kimi K2 证明了什么 它们证明了一件事:当你用正确的架构设计(MoE + MLA)、正确的优化器(MuonClip 替代 AdamW)、正确的数据 pipeline(智能体模拟场景),1T参数的模型可以在15.5万亿 token 的训练过程中全程稳定。 不需要重启。 不需要人工干预。 不需要"战略国家算力储备"。 这不是技术追赶。 这是路线证伪。 就像当年苹果证明了"智能手机不需要键盘",特斯拉证明了"电动车不需要妥协性能",SpaceX 证明了"火箭可以回收"。 现在,DeepSeek 和 Kimi K2 证明了: 训练顶级 AI 模型,不需要1.4万亿美元。 //之后会发生什么// 神不会死。 OpenAI 还有现金流,还有 ChatGPT 的用户基数,还有企业版订阅。但神会缩小。 1.4万亿美元的承诺会被重新谈判。部分数据中心项目会推迟或取消。投资人会开始问"为什么不用开源模型做底座"。 政府会发现,建设"国家 AI 基础设施"其实可以部署 Kimi K2,而不是向 OpenAI 购买算力配额。 更重要的是,开发者会用脚投票。 当 Hugging Face 上 Kimi K2 的下载量接近10万、GitHub 星标5.6K、Perplexity 的 CEO 公开说要基于 Kimi K2 做后训练时,这场游戏的规则已经变了。 Sam Altman 说"我们相信市场会处理失败"。 但他没说的是:市场正在处理的,不是某家公司的失败,而是某种路径的失败。 那种认为"只有砸更多钱才能做出更好模型"的路径。 那种认为"闭源才能保持领先"的路径。 那种认为"政府应该为私营数据中心提供低成本资本"的路径。 神会继续存在。 但祂的铠甲会被卸下一些。那些用1.4万亿美元堆起来的、刻着"AGI 需要无限算力"的护板,会被一片片敲掉。 留下的可能是一个更轻盈的 OpenAI——依然强大,但不再垄断叙事。 或者,留下的只是一个教训: 当你把赌注压到"我们是唯一能做到这件事的人"上时,最危险的对手不是那些追赶你的人,而是那些证明"其实不需要这么多钱"的人。 Kimi K2 的团队没有试图打败 OpenAI。 他们只是在北京的办公室里,用460万美元,证明了一件事: 有些伤口,不是被对手砍出来的。 是自己的铠甲太重,开始勒进肉里。