#向量搜索

#BestBlogs 基于 Elasticsearch 创建企业 AI 搜索应用实践 | InfoQ 中文 文章基于 QCon 演讲实录,深入探讨了在智能时代,如何利用 Elasticsearch 构建企业级 AI 搜索应用,尤其强调通过结合大模型和 Elasticsearch 的技术,有效规避大模型幻觉。 文章首先阐述了语义搜索的需求及传统搜索的局限,引出向量搜索的必要性。接着,详细介绍了 Elasticsearch 对密集向量和稀疏向量的支持、其向量搜索架构、操作步骤及混合搜索(RRF)机制。文章还重点讲解了 Elasticsearch 在性能优化(如量化技术、GPU 加速、并发查询)和未来 Serverless 架构上的创新。最后,通过 RAG、Agentic RAG 和 HyDE 等方法,结合 Elasticsearch 的多路召回能力,展示了如何实现更精准、高效的企业搜索实践。 主要内容: 1. 结合传统与向量搜索的混合搜索能显著提升 AI 搜索精度 -- 传统关键词搜索与语义向量搜索各有优劣,通过 RRF 等机制融合两者的优势,可有效提高召回率和搜索结果的精准度。 2. Elasticsearch 通过多项技术创新支持高效、可扩展的 AI 搜索 -- 文章介绍了 Elasticsearch 在密集/稀疏向量、量化、GPU 加速、Serverless 架构等方面的进展,为大规模 AI 搜索提供了坚实基础。 3. RAG 结合 Elasticsearch 可有效解决大模型幻觉问题并优化企业搜索 -- 利用 Elasticsearch 作为外部知识库,通过多路召回、Agentic RAG 和 HyDE 等策略,为 LLM 提供实时、准确的上下文,规避幻觉,提升企业搜索实用性。 文章链接: