Susan STEM

Susan STEM

0 关注者

3天前

百年麦肯锡:前AI时代最强世界信息结构化处理中心 麦肯锡100年都咨询了个啥 行了,推友咱都是自己人,不用整那些高大上的套话,麦肯锡这 100 年到底在忙啥?100 年前的世界,电力刚普及没多久,电话、流水线才刚刚进入工业体系,跨国公司屈指可数,全球供应链几乎还不存在,工业管理理论也就刚从泰勒制、福特制起步。而现在,我们生活在一个跨国生产网络遍布全球、供应链金融高度复杂、企业矩阵化管理、全球品牌满天飞、政府—企业—资本深度协作的世界。这背后,有一条非常清晰的“咨询优化轨迹”,麦肯锡就是这个轨迹上的核心设计者和调度员。 如果把它的百年历史当成一次长周期的“工业文明结构调度实验”,它做的核心工作就是为全球化工业体系进行结构设计与运行优化——从生产、资本、管理,到供应链、政策、技术路径的全局配置。它像是为全球工业系统编写和升级操作系统:早期帮企业装上预算与财务控制模块,中期设计多事业部和跨国布局架构,后期搭建全球供应链网络,再到近二十年推动数据化管理、精益优化、数字化转型与 ESG 内嵌。 因为这种持续 100 年的优化,世界从电气化萌芽期的局部生产,变成了今天的全球一体化、实时协作、指标化管理体系。副作用是系统高度耦合、风险传导极快。但也正因为有了这些被咨询公司塑造的全球结构,AI 时代才有了可以直接接管和自动化调度的基础。 我对叙事的历史没兴趣,我们研究过去,是为了谋划和推演未来。所以关键问题是——麦肯锡的结构精华到底是什么?它凭什么和其他顶级咨询机构一起,作为全球最强的大脑,把工业社会的财富和效率放大了无数倍? 结构化知识是麦肯锡的精华 要回答这个问题,就得先把“麦肯锡的结构精华”拆开来看。它的核心不是某一套具体的分析工具,而是一种长期积累出来的跨行业、跨地域、跨周期的结构处理能力——它能在不同的经济阶段、技术环境、政治格局下,把高熵的全球信息压缩成低熵的可执行方案,并推动这些方案落地。 首先是结构感知。麦肯锡掌握了一套几乎覆盖全球的“信号捕捉网络”,可以从政策、市场、技术、竞争格局中提前嗅到趋势拐点。它不是靠一个分析师的直觉,而是长期项目积累出的数据、案例、关系网络和行业模板的结合。这让它总能比客户自己更早、更系统地看清结构变化。(人家60个办公室遍布全球)。 其次是结构压缩。大量的调研和信号捕捉回来后,它们会被套进一套标准化的分析框架(价值链分析、7S 模型、行业矩阵等),把复杂的行业动态、企业现状和外部环境压缩成几个清晰的战略选项和优先级。这一步是麦肯锡的“算法层”,虽然形式是人类顾问的PPT,但本质是一次结构计算。 然后是结构调度。光有方案不够,麦肯锡的强项在于能直接影响客户在资本、人力、技术、供应链等方面的资源配置,并且知道怎么让这些决策在组织内部被执行。这依赖它的高信任度人脉网络——政府、跨国企业、资本市场——和它对不同利益相关方的协调能力。 最后是跨行业迁移。麦肯锡积累了大量行业的结构模板,可以把某个行业成熟的运行机制直接移植到另一个行业,比如把汽车制造的精益生产理念带到医疗运营,把零售业的供应链优化方法移植到能源行业。这种“结构复用”能力,让它在全球范围内加速了效率扩散。 所以,麦肯锡和顶级咨询机构的真正价值,是在过去 100 年里构建了一个全球工业结构的知识库 + 决策算法 + 执行接口网络。它们不直接制造财富,而是通过优化结构来放大财富创造的效率。 AI时代先把人力转成AI 在 AI 时代,这套“结构调度能力”第一次有机会被技术复制、API 化、甚至超越。因为过去需要几百人几个月才能完成的调研、压缩、调度,现在 AI 可以在几分钟内完成第一轮输出,并且实时更新。麦肯锡的百年积累,正好将是我们构建 Strategy as Code、Governance as Code 这些结构文明底座的历史原型。 麦肯锡大部分交付居然是静态的PPT和PDF! 没错,麦肯锡让我最难接受的一点,就是它的交付物大部分还是静态的。 这种静态文档,在交到客户手里之后,并不会直接生效,而是需要经过一层又一层的“翻译”——高层解读成部门目标,部门经理再拆成任务,业务分析师再写需求文档,最后技术团队去实现。等它真正落到系统里,已经是好几道传话筒之后的产物。PPT → PRD 的流程。耗人力无数。 你想想,麦肯锡自己没有任何实体生产,没有工厂、没有零售,甚至不碰执行系统,但它全球却养着几万名顾问。对于一个计算机人来看,这个模式最大的“bug”就是信息经过多层人工传递,成本高、易失真、效率低。 我们举个具体的场景——你花了 50 万美元(还不算最贵的那种)定制了一份麦肯锡的咨询报告,收到了厚厚的 PDF。接下来你要干嘛? 第一步,你得把报告里的战略目标解释给公司高层和核心团队听; 第二步,高层再把它拆成各部门的业务目标和优先级; 第三步,业务部门找产品经理或业务分析师,把这些目标翻译成可以落地的业务流程和功能需求; 第四步,技术部门根据需求文档再写系统设计、数据模型、接口规范; 第五步,等系统上线,还要手动对照原战略看看有没有跑偏。 在这个链条里,每一步都是人工翻译,每翻一次就可能丢掉细节、误解原意、改动逻辑。等你花了半年、一年去落地时,市场环境早就变了。 而在 As Code 的思路下,这份“50 万美元的 PDF”本可以直接变成机器可执行的结构协议:战略目标直接编译成数据契约、规则引擎配置、执行编排,自动分发给相关系统,实时执行和回滚——不需要一层层传话。 对不? API:这还需要推演么? 如果他们没想明白这个1,2,3那就完蛋了。 麦肯锡最起码,有大量的交付可以做成API。 API 化”就是把原来写在 PPT/文档里的策略、规则、流程,封装成可调用、可组合、可审计的稳定接口。它是把“叙事 → 协议 → 执行”连成一条线的工程化方法。 我举一个超级简单的例子: 假设你是零售集团的市场部负责人,需要让各地区根据库存和价格弹性来调整商品售价。按照传统的静态交付模式,咨询公司会先给你一份厚达 200 页的 PDF,其中明确写着类似这样的规则:如果库存覆盖天数低于某个阈值且需求预测上涨,就提高价格 2%;如果价格弹性小于 -0.4 且竞争价差大于 3%,则降低价格 2%。接下来,你得先让业务经理读懂这些规则,再由他们整理成 Excel 表格交给技术团队,然后技术团队再将这些规则写进代码并部署到系统中。整个流程往往需要一到两个月,中间还要反复对齐定义和修正口径。而在 API 化的动态交付模式下,咨询公司直接提供一个 PriceRecommendation API,你只需输入商品信息、库存、价格弹性等数据,就能实时获得系统返回的建议价格,不再需要冗长的人工翻译和多层中转。 As Code的未来: 在咨询或 As Code 的语境中,API 用清晰的输入/输出、版本和契约(例如通过 IR/DSL 转化为 OpenAPI、GraphQL、gRPC 等形式)将业务策略、规则、数据分析与决策逻辑封装成服务,使其能够被人和机器一致地调用、组合与结算。 它的目标是在 PPT → PRD → 系统之间大幅缩短那层“人工翻译链”,让信息直接成为可执行的指令,并将“一次性交付”转化为“持续服务”的模式。这样做的好处包括:减少信息在传递过程中的失真,让同一份契约贯穿执行全程;将行业结构单元做成类似乐高组件,方便跨团队、跨组织复用与拼装;确保每一次调用都有可追踪的 trace、SLA、审计与回滚策略(与 GitOps/As Code 的原则一致);并且能从一次性售卖项目转向按接口、配额或订阅的方式模块化输出咨询能力。 从结构文明的角度看,API 是最简单、最直接的一层 As Code——它的作用是将原本抽象、模糊、需要人工解读的规则,封装成机器可调用的结构化接口,实现“输入 → 规则执行 → 输出”的直接闭环。但 API 化更多解决的是执行层的问题,而完整的 As Code 还包括声明层(规则定义与版本管理)、调和层(保持声明态与运行态一致)、观测层(可追踪与回滚)、互操作层(跨系统对齐)等内容。因此,API 可以看作是 As Code 的落地触点或出口端口,但要实现真正意义上的 As Code,还必须把规则的定义、版本、调用、验证与回滚全部纳入同一套结构化协议中。 未完待续…. (2/n) 泼一碗冷水——这事没那么简单,这项技术本身也算不上什么惊天动地的发明,你甚至可以问:“既然这么好,为啥以前不做?” 现实是,即便今天 IT 部署成本已经大幅下降,真正推起来依然很麻烦:要统一规则、口径,要跨部门改流程,还要让不同背景的人达成共识。 但这并不是我的重点。我的观点是,哪怕它依然复杂、实施周期长,信息技术背后的文明范式已经开始发生跳跃。过去,我们习惯把战略、规则、政策这些高语义内容留在文档和会议里,让它们在人工翻译的多层链路中逐级下沉;而今天,第一次出现了让这些内容直接以机器可执行形式存在的现实可能性。 这种变化不是单点的工具升级,而是底层运行逻辑的换代——从“信息描述世界”变成“信息驱动世界”,从“靠人去解读并执行”变成“信息本身就是协议、就是操作”。它的麻烦恰恰说明,这不是一次小修小补,而是一次结构级的迁移。等到这条路径被跑通,成本会继续下降,门槛会越来越低,最终它会像互联网一样成为所有系统的默认形态。 这才是我想说的关键。否则我费那么大劲干嘛。

相关新闻

placeholder

Gorden Sun

10小时前

AI资讯日报,8月16日: