在 AI Coding 火热的今天,几乎所有技术团队都在找路径: 是加快平台建设、让 AI 更快进产线,还是深耕 prompt 工程、提高协作效率? 不少公司已经开始立项目、定指标、搞培训,整个行业进入了“推动期”。 我们公司也不例外。 战略层坚定认为这是方向,也确实给予了明确的资源倾斜; 团队层积极响应,平台搭建迅速、流程推进有序,整体看起来一片欣欣向荣。 但在一线的实际使用中,问题也在快速暴露: 尤其是在老代码体系中,AI 的接入效果并不理想,历史逻辑复杂、结构混乱、上下文缺失,导致 AI 很难真正帮上忙,甚至可能引入额外不确定性。 更现实的是,大多数人并非在推动新项目,而是日复一日与既有系统打交道。 在缺乏针对“存量屎山”的方法论支撑下,AI Coding 很容易变成“新流程套在旧系统”,流程先进,但与老逻辑严重脱节。 目前的“团队配合度”,更多还是对战略方向的响应,甚至可以说是对管理意志的迎合。 但在落地层面,仍缺少真正能跑起来的闭环机制: 像 context7 之类的 MCP 等工具虽然频繁被提及,但在实际项目中能否支撑起稳定协作?prompt 怎么组织、输出如何校验、代码如何接入和反馈?这些基本机制还未沉淀下来,用一用可以,长期稳定很难。 往下走,问题就不只是工具和平台,而是更本质的反思: 到底什么才是“AI 原生的 Coding”? 我们今天的开发模式、工程组织方式,是否已经不适合 AI 参与协作? 如果还在用传统的开发范式来“喂 AI”,那 AI Coding 很难真正释放生产力,只会成为一层外挂、甚至负担。 这对整个软件工程体系,是一次结构性挑战; 而对团队协作本身,同样是巨大的挑战: AI 能力的介入,正在打破原有的任务划分方式、代码 ownership、沟通链路甚至审查机制。 过去是“谁写谁维护”,现在可能变成“AI 写、人审、人补”,角色边界变模糊,协作机制还没重建。 不重新定义协作方式、共识机制和责任边界,就很难真正让团队稳定地跑起来。 所以,现阶段更需要的,不是更快的推动,而是一次更系统的重构:把 AI Coding 从“技术方向”拉回到“流程设计”、“协作模式”和“组织能力建设”上,形成真正可落地、可演进的机制。 方向是对的,但路径必须让人能走。 不知道你们公司现在是什么情况?有没有类似的感受?